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Abstract. We study relative differential closure in the context of Hardy fields.

Using our earlier work on algebraic differential equations over Hardy fields, this

leads to a proof of a conjecture of Boshernitzan (1981): the intersection of all
maximal analytic Hardy fields agrees with that of all maximal Hardy fields.

We also generalize a key ingredient in the proof, and describe a cautionary

example delineating the boundaries of its applicability.
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Introduction

Hardy’s monograph Orders of Infinity1[30] founded an asymptotic calculus of non-
oscillating real-valued functions, building on earlier ideas by du Bois-Reymond [13].
Hardy introduced the class of logarithmic-exponential functions (LE-functions, for
short): functions constructed in finitely many steps from real constants and the
identity function x using arithmetic operations, exponentiation, and logarithm. He
observed that this class allows one to describe the growth rates at infinity of many
functions that naturally arise in mathematics. In his own words [30, p. 48]:

No function has yet presented itself in analysis the laws of whose
increase, in so far they can be stated at all, cannot be stated, so to
say, in logarithmico-exponential terms.

Typical examples of LE-functions defined on (1,+∞) are xr (r ∈ R), xx, ex
2

,
and (log x)(log log x). Much of the usefulness of the class of LE-functions stems
from the fact that their germs at infinity form what Bourbaki [18] called a Hardy
field : a field H of germs at +∞ of differentiable real-valued functions on inter-
vals (a,+∞) (a ∈ R) such that for any such function with germ inH, the germ of its
derivative is also in H. The basic facts about Hardy fields are due to Bourbaki [18],
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Sjödin [52], Robinson [41], Boshernitzan [14]–[17], and Rosenlicht [45]–[49]. As
background we shall mention such facts in this introduction.

A Hardy field H such that each f ∈ H has a smooth (C∞) representative is called
smooth; likewise we define when H is analytic. Most Hardy fields from practice (like
Hardy’s field of LE-functions) are analytic; but not every Hardy field is analytic,
or even smooth2. Every Hardy field is naturally a differential field, and an ordered
field: the germ of a function f is declared to be positive whenever f(t) is eventually
positive. Instead of the ordering we also use the asymptotic relations ≼, ≺, ≍ to
compare germs f , g in a Hardy field:

f ≼ g :⇐⇒ f = O(g) :⇐⇒ |f | ⩽ c|g| for some real c > 0

f ≺ g :⇐⇒ f = o(g) :⇐⇒ |f | < c|g| for all real c > 0

f ≍ g :⇐⇒ f ≼ g and g ≼ f ; f ≻ g :⇐⇒ g ≺ f.

(The ≼-notation of du Bois-Reymond predates the big O-notation of Bachmann and
Landau, and is more convenient in dealing with Hardy fields.) The basic operations
of calculus play well with the ordering and asymptotic relations on Hardy fields.
For example, given any germs f , g in a common Hardy field,

f > 0, f ≻ 1 ⇒ f ′ > 0, f ≺ g ̸≍ 1 ⇒ f ′ ≺ g′.

The germ of a non-oscillating differentially algebraic function usually lies in a Hardy
field. Besides the LE-functions, this is also the case for special functions like the
error function erf, the exponential integral Ei, the Airy functions Ai and Bi, etc.
Many differentially transcendental functions, like the Riemann ζ-function and Eu-
ler’s Γ-function, also have their germs in Hardy fields.

Characteristic of Hardy fields is that its elements are non-oscillating in a strong
sense: if f is a germ in a Hardy field H, then not only is the sign of f(t) ultimately
constant, but also each differential-polynomial expression in f such as

g(t)f ′′(t)3 − h(t)f ′(t)f(t)2 + 2 (g, h ∈ H).

This property is reflected in the existence of a field ordering on H as well as the
relations ≼ and ≺ that are so useful in asymptotics. Functions that are non-
oscillating in such a strong sense may be viewed as tame. In certain applications,
establishing tameness is decisive: for example, it plays an important role in Écalle’s
work [23] on Dulac’s conjecture (a weakened version of Hilbert’s 16th Problem).
An even stronger form of tameness is o-minimality [39], and the germs of definable
univariate functions of an o-minimal expansion of the real field form a Hardy field.
This leads to many further examples of Hardy fields [35, 42].

The class of LE-functions is rather small. For example, the antiderivatives of ex
2

have their germs in a Hardy field but are not LE-functions (Liouville, cf. [43]).
Hardy’s quote above notwithstanding, the functional inverse of (log x)(log log x)
turned out to not even be asymptotic to an LE-function [22, 32] (and yet its germ
also lies in a Hardy field). There are also (analytic) solutions of simple functional
equations in Hardy fields ultimately outgrowing all LE-functions [16].

Any Hardy field has a unique algebraic Hardy field extension that is real closed;
see [52] and [41]. For any germ f in a Hardy field H, its exponential ef , its
logarithm log f (if f > 0), and any primitive of f lie in a Hardy field extending H;
see [18]. More generally, if H is a Hardy field and P,Q ∈ H[Y ]\{0}, then each germ
of a C1-function y satisfying y′Q(y) = P (y) belongs to a Hardy field extending H;
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see [45, Theorem 2] and [51]. In [9] we proved what is in some sense the ultimate
result on solving algebraic differential equations in Hardy fields:

Theorem. Given any Hardy field H, polynomial P ∈ H[Y0, . . . , Yn] and f, g ∈ H
with f < g and P (f, f ′, . . . , f (n)) < 0 < P (g, g′, . . . , g(n)), there is a y in a Hardy
field extension of H such that f < y < g and P (y, y′, . . . , y(n)) = 0.

We convert this into an intermediate value property by means of the concept
of a maximal Hardy field: a Hardy field that is not contained in any strictly
larger one. Likewise we define maximal smooth Hardy fields and maximal ana-
lytic Hardy fields. Any Hardy field of either type is contained in a maximal one of
the same type, by Zorn. Now the theorem can be rephrased as: maximal Hardy
fields have DIVP (the Differential Intermediate Value Property), where a Hardy
field H is said to have DIVP if for all P ∈ H[Y0, . . . , Yn] and f, g ∈ H such
that f < g and P (f, f ′, . . . , f (n)) < 0 < P (g, g′, . . . , g(n)), there is a y ∈ H such
that f < y < g and P (y, y′, . . . , y(n)) = 0. By the way, [9] also shows that maximal
smooth and maximal analytic Hardy fields have DIVP.

DIVP essentially captures all properties of maximal Hardy fields that can be
stated in the language of ordered differential fields, in analogy with the intermedi-
ate value property for ordinary polynomials capturing the property for an ordered
field to be real closed. For a further explanation of this statement and numerous
consequences of the above theorem3 we refer to the introduction to [9].

Some (germs of) functions are “absolutely tame” in the sense that they belong
to every maximal Hardy field. This holds in particular for all LE-functions, and
Boshernitzan [14, 15, 16] promoted the study of these germs as natural general-
izations of LE-functions. The Hardy field E of absolutely tame germs is rather
extensive: for example, it is closed under exponentiation, logarithm, and taking
antiderivatives; more generally, any solution y ∈ C1 of an equation y′Q(y) = P (y)
where P,Q ∈ E[Y ] \ {0} also has its germ in E (by a result mentioned earlier).

Thus, for instance, arctan and the Gaussian integrals
∫ x

e−t2 dt are in E. Moreover,
if f ∈ E and f ≼ 1, then cos f, sin f ∈ E. But Boshernitzan [16, Proposition 3.7] also
exhibited germs in Hardy fields not belonging to E: the germ of any C2-function

satisfying y′′ + y = ex
2

lies in a Hardy field4, but no maximal Hardy field con-
tains more than one5 and hence none of them lies in E. As a consequence, E does
not have DIVP6. Boshernitzan also considered the intersection E∞ of all maximal
smooth Hardy fields and the intersection Eω of all maximal analytic Hardy fields,
and conjectured that E = E∞ = Eω [14, §10, Conjecture 1]. As positive evidence,
in [15, (20.1)] he obtained E ⊆ E∞ ⊆ Eω. In this paper we prove this conjecture:

Theorem A. Any germ lying in all maximal analytic Hardy field also lies in all
maximal Hardy fields.

By [15, Theorem 14.3], each f ∈ Eω is differentially algebraic. So it may not be
surprising that the proof of Theorem A centers on a study of the notion of relative
differential closure in the context of Hardy fields: if E ⊇ H are Hardy fields,
the differential closure of H in E is the set of all y ∈ E which are differentially
algebraic over H, that is, satisfy an equation P (y, y′, . . . , y(n)) = 0 for some n
and nonzero P ∈ H[Y0, . . . , Yn], and we say that H is differentially closed in E
if it equals its differential closure in E. A crucial ingredient for this study is a
differential transcendence result [ADH, 16.0.3], of which we prove here a variant:
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Theorem B. Let E ⊇ H be Hardy fields where H properly extends R and has
DIVP. Then H is differentially closed in E iff E ∩ exp(H) ⊆ H.

We include an example showing that the hypothesisH ⊃ R in Theorem B cannot be
replaced by the condition E∩R = H∩R ̸= H. This uses a result of Rosenlicht [44].

From du Bois-Reymond and Hardy to Écalle, Conway, and Gödel. An
attractive feature of Hardy fields is that their elements are actual functions (more
precisely, germs of such). To conclude this introduction we recall two alternative
universal frameworks for tame asymptotics in which growth rates are explicitly
represented, namely transseries and surreal numbers. Transseries (à la Écalle [23])
are constructed from a formal indeterminate x and the real numbers using the field
operations, exponentiation, logarithms, and certain kinds of infinite summation7.
They are generalized series (in the sense of Hahn [27]) with real coefficients and
monomials that themselves are “simpler” transseries, such as in the third term of

f = e
1
2 ex −5 ex

2

+ex+x1/2+x1/3+··· +
3
√
2 log x− x−1 + e−x +e−2x + · · ·+ 5 e−x3/2

.

The transseries form a field which, like each Hardy field, naturally comes equipped
with a derivation d

dx and an ordering making it an ordered differential field T.
Surreal numbers, invented by J. H. Conway [20] in connection with game theory,

have a more combinatorial flavor. They include both real numbers and Cantor’s
ordinal numbers, forming a proper class naturally equipped with an ordering and
arithmetic operations making it a real closed ordered field extension No of R. For
example, with ω the first infinite ordinal, ω−π, 1/ω,

√
ω, make sense as surreal num-

bers8. Recently, Berarducci and Mantova [12] constructed a derivation ∂BM on No
making it an ordered differential field with field of constants R and ∂BM(ω) = 1.

Thus maximal Hardy fields, the field of transseries T, and No are all exten-
sions of R to ordered differential fields containing both infinite and infinitesimal
elements. It is natural to ask about the canonicity of such extensions of the con-
tinuum. By [ADH] and [4, 9], they share the same first-order theory, as ordered
differential fields. In [10] we show that under Cantor’s Continuum Hypothesis
(CH), any maximal Hardy field is in fact isomorphic to the ordered differential
subfield No(ω1) of No (consisting of the surreal numbers of countable length).
In [2] this is also shown for maximal smooth and maximal analytic Hardy fields9

Without even assuming CH, one can embed T into each maximal analytic Hardy
field and also into No(ω1), cf. [2, 4]. One is left to wonder what Gödel would
have made of this in light of his long standing interest in CH, his appreciation of
A. Robinson’s nonstandard analysis, and his musings, reported by Conway, whether
or not a solution to the Continuum Hypothesis might yet be possible, but only once
the correct theory of infinitesimals had been found [40, pp. 209–213].

Organization of the paper. To keep the length of this paper at bay we assume
familiarity with the basic setup of [ADH]. (For a brief synopsis which should suffice
for reading the present paper see the section Concepts and Results from [ADH]
in the introduction to [8]10.) Section 1 has additional definitions and results from
the papers [7, 8, 9] used in this note. Section 2 contains a Hensel type Lemma
for analytic functions on Hahn fields. This is applied to solve certain equations
involving power functions in T, for use in connection with Theorem B. We then
study differential closure, first in the general setting of differential fields (Section 3),
then in H-fields (Sections 4 and 5), before proving Theorems A and B in Section 6.
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Notations and conventions. For this we follow [ADH]. In particular, m, n range
over the set N = {0, 1, 2, . . . } of natural numbers. Given an ordered abelian group Γ,
additively written, we put Γ> := {γ ∈ Γ : γ > 0}. For an additively written
abelian group A set A ̸= := A \ {0}. Given a commutative ring R (always with
identity 1), R× denotes the multiplicative group of units of R. (So if K is a
field, then K ̸= = K×.) If R is a differential ring (by convention containing Q
as a subring) and y ∈ R×, then y† = y′/y denotes the logarithmic derivative
of y, so (yz)† = y† + z† for y, z ∈ R×, and thus R† := {y† : y ∈ R×} is an
additive subgroup of R. The prefix “d” abbreviates “differentially”; for example,
“d-algebraic” means “differentially algebraic”.

Acknowledgements. Joris van der Hoeven has been supported by an ERC-2023-
ADG grant for the ODELIX project (number 101142171). Funded by the European
Union. Views and opinions expressed are however those of the authors only and
do not necessarily reflect those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor the granting authority
can be held responsible for them.

1. Preliminaries

We begin by recalling definitions, notations, and facts around germs, Hausdorff
fields, and Hardy fields as needed later. Next we briefly discuss the main result of
our paper [9] on the first-order theory of maximal Hardy fields. Finally, we include
some material on general asymptotic differential algebra from [8], before discussing
polar coordinates for germs in complexifications of Hardy fields.

Germs. Let a range over R and r over N ∪ {ω,∞}. We let Cr be the R-algebra
of germs at +∞ of R-valued Cr-functions on half-lines (a,+∞), for varying a,
where Cω means “analytic”. Thus C := C0 consists of the germs at +∞ of continuous
functions (a,+∞) → R, and

C = C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ C∞ ⊇ Cω.

The complexification C[i] = C + Ci of C is the C-algebra consisting of the germs
of continuous functions (a,+∞) → C, for varying a. We have the C-subalge-
bra Cr[i] = Cr+Cri of C[i]. For n ⩾ 1 we have the derivation g 7→ g′ : Cn[i] → Cn−1[i]
such that (germ of f)

′
= (germ of f ′) for Cn-functions f : (a,+∞) → R, and i′ = 0.

Therefore C<∞[i] :=
⋂

n Cn[i] is naturally a differential ring with ring of con-
stants C, and C<∞ :=

⋂
n Cn is a differential subring of C<∞[i] with ring of con-

stants R. Note that C<∞[i] has C∞[i] as a differential subring, C<∞ has C∞ as a
differential subring, and C∞ has in turn the differential subring Cω.

Asymptotic relations. We often use the same notation for a C-valued function on
a subset of R containing an interval (a,+∞) as for its germ if the resulting ambiguity
is harmless. We equip C with the partial ordering given by f ⩽ g :⇔ f(t) ⩽ g(t)
for all sufficiently large real t, and equip C[i] with the asymptotic relations ≼, ≺, ∼
defined as follows: for f, g ∈ C[i],

f ≼ g :⇐⇒ |f | ⩽ c|g| for some c ∈ R>,

f ≺ g :⇐⇒ g ∈ C[i]× and |f | ⩽ c|g| for all c ∈ R>,

f ∼ g :⇐⇒ f − g ≺ g.
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Hausdorff fields. Let H be a Hausdorff field : a subfield of C. Then the partial
ordering of C restricts to a total ordering on H which makes H into an ordered
field. The ordered field H has a convex subring O := {f ∈ H : f ≼ 1}, which is
a valuation ring of H, and we consider H accordingly as a valued ordered field.
Moreover, H[i] is a subfield of C[i], and O+Oi =

{
f ∈ H[i] : f ≼ 1

}
is the unique

valuation ring of H[i] whose intersection with H is O. In this way we consider H[i]
as a valued field extension ofH. The asymptotic relations ≼, ≺, ∼ on C[i] restrict to
the asymptotic relations ≼, ≺, ∼ on H[i] that H[i] has as a valued field (cf. [ADH,
(3.1.1)]; likewise with H in place of H[i].

Hardy fields. Let H be a Hardy field : a differential subfield of C<∞. Then H
is a Hausdorff field, and we consider H as an ordered valued differential field with
ordering and valuation as above. Any Hardy field is a pre-H-field; if it contains R,
it is is an H-field. We equip the differential subfield H[i] of C<∞[i] with the unique
valuation ring lying over that of H. Then H[i] is a pre-d-valued field of H-type
with small derivation, and if H ⊇ R, then H[i] is d-valued with constant field C.

Recall that H is said to be maximal if it has no proper Hardy field extension, and
that every Hardy field has a maximal Hardy field extension. The intersection E(H)
of all maximal Hardy field extensions ofH is a Hardy field extension ofH, called the
perfect hull of H, and if E(H) = H, then H is said to be perfect. We also say that H
is d-maximal if it has no proper d-algebraic Hardy field extension. Zorn yields a
d-maximal d-algebraic Hardy field extension of H, hence the intersection D(H)
of all d-maximal Hardy fields containing H is a d-algebraic Hardy field extension
of H, called the d-perfect hull of H. We call H d-perfect if D(H) = H. If H is
d-perfect, then H ⊇ R and H is a Liouville closed H-field, by [7, remarks after
Proposition 4.2]. We have D(H) ⊆ E(H); indeed, by [7, Lemma 4.1]:

Lemma 1.1. D(H) =
{
f ∈ E(H) : f is d-algebraic over H

}
.

A smooth Hardy field is a Hardy field H ⊆ C∞, and an analytic Hardy field is a
Hardy field H ⊆ Cω. Instead of smooth and analytic Hardy fields we also speak
of C∞- and Cω-Hardy fields. Let r ∈ {∞, ω}. A Cr-maximal Hardy field is a Cr-
Hardy field which has no proper Cr-Hardy field extensions. If H ⊆ Cr, then we
let Er(H) be the intersection of all Cr-maximal Hardy fields containing H. Thus
using the notation from the introduction, our main objects of interest in this paper
are E = E(Q), E∞ = E∞(Q), and Eω = Eω(Q). Instead of “C∞-maximal” and “Cr-
maximal” we also write “maximal smooth” and “maximal analytic”, respectively.
The following is [9, Corollary 7.8]:

Proposition 1.2. Suppose H is smooth. Then every d-algebraic Hardy field exten-
sion of H is also smooth; in particular, D(H) is smooth. Likewise with “smooth”
replaced by “analytic”.

Let now H be a C∞-Hardy field. Then by Proposition 1.2, H is d-maximal iff H
has no proper d-algebraic C∞-Hardy field extension; thus every C∞-maximal Hardy
field is d-maximal, and H has a d-maximal d-algebraic C∞-Hardy field extension.
The same remarks apply with ω in place of ∞.

The main result of [9]. A closed H-field (or H-closed field) is a Liouville closed,
ω-free, newtonian H-field. By [ADH], the closed H-fields with small derivation are
precisely the models of the elementary theory of T as an ordered valued differential
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field. Hence by the next theorem, every d-maximal Hardy field as an ordered valued
differential field is elementarily equivalent to T.

Theorem 1.3. For a Hardy field H, the following are equivalent:

(i) H is a d-maximal Hardy field;
(ii) H ⊇ R and H is a closed H-field;
(iii) H ⊇ R and H is a Liouville closed H-field having DIVP.

Here [9, Theorem 11.19] is the equivalence (i) ⇔ (ii), and (ii) ⇔ (iii) is [5, Corol-
lary 1.7]. The preceding theorem and Proposition 1.2 yield [9, Corollary 11.20]:

Corollary 1.4. Each Hardy field H has a d-algebraic H-closed Hardy field exten-
sion. If H is a C∞-Hardy field, then so is any such extension, and likewise with Cω

in place of C∞.

Logarithmic derivatives. Let K be a differential field. The group of logarithmic
derivatives of K is the additive subgroup K† = {f† : f ∈ K×} of K. If K is
algebraically closed or real closed, then K† is divisible. Here is [8, Lemma 1.2.1]:

Lemma 1.5. Suppose K† is divisible, L is a differential field extension of K such
that L† ∩K = K†, and M is a differential field extension of L and algebraic over L.
Then M† ∩K = K†.

Suppose that H is a real closed asymptotic field whose valuation ring O is convex
with respect to the ordering of H, and K := H[i]. Then OK = O + Oi is the
unique valuation ring of K with OK ∩H = O [ADH, 3.5.15]. Equipped with this
valuation ring, K is an asymptotic field extension of H [ADH, 9.5.3], and if H is
H-asymptotic, then so is K. With wr(a, b) := ab′ − a′b (the wronskian of a, b), set

S :=
{
y ∈ K : |y| = 1

}
, W :=

{
wr(a, b) : a, b ∈ H, a2 + b2 = 1

}
.

Then S is a subgroup of O×
K with S† =W i and K† = H†⊕W i by [8, Lemma 1.2.4].

Since ∂O ⊆ I(H), we also have W ⊆ I(H), and thus: W = I(H) ⇐⇒ I(H)i ⊆ K†.
Moreover, by [8, Lemma 1.2.13] we have W = I(H) ⊆ H† ⇐⇒ I(K) ⊆ K†.

Lemma 1.6. Suppose H is H-asymptotic with asymptotic integration, and K is
1-linearly newtonian. Then K† = H† ⊕ I(H)i. Moreover, if F is a real closed
asymptotic extension of H whose valuation ring is convex, then

F [i]† ∩K = (F † ∩H)⊕ I(H)i.

Proof. By [8, Corollary 1.2.14] we have I(K) ⊆ K† and thus W = I(H) and K† =
H†⊕I(H)i by the remarks before the lemma. The second part of the lemma follows
from this and [8, Corollary 1.2.15]. □

The universal exponential extension. In this subsection K is a differential
field with algebraically closed constant field C and divisible group K† of logarithmic
derivatives. An exponential extension of K is a differential ring extension R of K
such that R = K[E] for some E ⊆ R× with E† ⊆ K. By [8, Section 2.2, especially
Corollary 2.2.11 and remarks preceding it], there is an exponential extension U
of K with CU = C such that every exponential extension R of K with CR = C
embeds into U over K; any two such exponential extensions of K are isomorphic
over K. We call U the universal exponential extension of K, denoted by UK if we
want to stress the dependence on K. By its construction in [8, Section 2.2], U is an
integral domain, and (U×)† = K by [8, remarks before Example 2.2.4]. We denote
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the differential fraction field of U by Ω (or ΩK); then CΩ = C by [8, remark before
Lemma 2.2.7]. If L is a differential field extension of K such that CL is algebraically
closed and L† is divisible, then by [8, Lemma 2.2.12] the natural inclusion K → L
extends to an embedding UK → UL of differential rings.

Suppose that K is d-valued of H-type with Γ ̸= {0} and with small derivation.
By [8, Lemma 2.5.1], the valuation of K extends to a valuation on Ω that makes Ω a
d-valued extension of K of H-type with small derivation, called a spectral extension
of the valuation of K to Ω. By [8, Lemma 2.5.3 and Corollary 2.5.5] we have:

Lemma 1.7. If K is λ-free and I(K) ⊆ K†, then the H-asymptotic couple (ΓΩ, ψΩ)
of Ω equipped with a spectral extension of the valuation of K is closed with ΨΩ :={
ψΩ(γ) : γ ∈ Γ̸=

Ω

}
⊆ Γ.

Some facts about complexified Hardy fields. In this subsection, H is a Hardy
field. The H-asymptotic field extension K := H[i] of H is a differential sub-
ring of C<∞[i]. The next proposition, [7, Proposition 6.11], considers the condi-
tion I(K) ⊆ K† in this setting:

Proposition 1.8. Suppose H ⊇ R is closed under integration. Then the following
are equivalent:

(i) I(K) ⊆ K†;
(ii) ef ∈ K for all f ∈ K with f ≺ 1;
(iii) eϕ, cosϕ, sinϕ ∈ H for all ϕ ∈ H with ϕ ≺ 1.

Next we discuss “polar coordinates” of nonzero elements of K:

Lemma 1.9. Let f ∈ C[i]×. Then |f | ∈ C×, and f = |f | eϕi for some ϕ ∈ C. Such ϕ
is unique up to addition of an element of 2πZ. If also f ∈ Cr[i]×, r ∈ N ∪ {∞, ω},
then |f | ∈ Cr and ϕ ∈ Cr for such ϕ.

Proof. It is clear that |f | ∈ Cr if f ∈ Cr[i]×. To show existence of ϕ we re-
place f by f/|f | to arrange |f | = 1. Take a ∈ R and a continuous representa-
tive [a,+∞) → C of f , also denoted by f , such that |f(t)| = 1 for all t ⩾ a. The
proof of [21, (9.8.1)] shows that for b ∈ (a,+∞) and ϕa ∈ R with f(a) = eϕai there is
a unique continuous function ϕ : [a, b] → R such that ϕ(a) = ϕa and f(t) = eϕ(t)i for
all t ∈ [a, b], and if also f |[a,b] is of class C1, then so is this ϕ with iϕ′(t) = f ′(t)/f(t)
for all t ∈ [a, b]. With b→ +∞ this yields the desired result. □

Lemma 1.10. Suppose H ⊇ R is Liouville closed and f ∈ C1[i]×. Then f† ∈ K
iff |f | ∈ H> and f = |f | eϕi for some ϕ ∈ H. If in addition f ∈ K×, then f = |f | eϕi
for some ϕ ≼ 1 in H.

Proof. Take ϕ ∈ C as in Lemma 1.9. Then ϕ ∈ C1 and Re f† = |f |†, Im f† = ϕ′.
If f ∈ K×, then the remarks preceding Lemma 1.6 give ϕ′ ∈ I(H), so ϕ ≼ 1. □

Corollary 1.11. Suppose H ⊇ R is Liouville closed with I(K) ⊆ K†. Let L be a
differential subfield of C<∞[i] containing K. Then L† ∩K = K†.

Proof. Let f ∈ L× satisfy f† ∈ K. Then f = |f | eϕi with |f | ∈ H>, ϕ ∈ H, by Lem-
ma 1.10. Hence eϕi, e−ϕi ∈ L, thus cosϕ = 1

2 (e
ϕi +e−ϕi) ∈ L. In particular, cosϕ

doesn’t oscillate, so ϕ ≼ 1. Thus f = |f |(cosϕ+i sinϕ) ∈ K by Proposition 1.8. □
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2. Hensel’s Lemma for Analytic Functions on Hahn Fields

Let k be a field and M a (multiplicatively written) ordered abelian group, with
the ordering of M denoted by ≼. Let K = k[[M]] be the corresponding Hahn
field over k. Its (Hahn) valuation has valuation ring O := k[[M≼1]], with maximal
ideal O := k[[M≺1]]. Let Q(Z) be a power series

∑
n anZ

n with all an ∈ O. Then
for z ∈ O the sum

∑
n anz

n exists with value Q(z) :=
∑

n anz
n ∈ O. Let Q′(Z) :=∑

n(n+ 1)an+1Z
n be the formal derivative of Q(Z). Here is a Hensel type lemma:

Lemma 2.1. If Q(0) ≺ 1 and Q′(0) ≍ 1, then Q(z) = 0 for a unique z ∈ O.

Proof. Assume Q(0) ≺ 1, Q′(0) ≍ 1. This means a0 ≺ 1 and a1 ≍ 1. Multiplying
with a−1

1 we reduce to the case a1 = 1, so for z ∈ O we have

Q(z) = 0 ⇐⇒ z −Q(z) = −a0 − a2z
2 − a3z

3 − · · · = z.

Now for distinct z1, z2 ∈ O we have zn1 − zn2 ≺ z1 − z2 for n ⩾ 2, so the map z 7→
z −Q(z) : O → O is contracting:

(
z1 − Q(z1)

)
−
(
z2 − Q(z2)

)
≺ z1 − z2 for dis-

tinct z1, z2 ∈ O. Thus this map has a unique fixpoint z ∈ O by [ADH, 2.2.12]. □

The valued field T of transseries is not a Hahn field, but it is a direct union of Hahn
subfields over the coefficient field R, and in this way the above lemma applies to T.
For c ∈ R and f ∈ T> we set f c := exp(c log f) ∈ T. Then (f c)† = cf† and z ∈ T
with z ≺ 1 gives (1 + z)c =

∑
n

(
c
n

)
zn ∈ T: for this, note that for real t ∈ (−1, 1),

(1 + t)c =

∞∑
n=0

(
c

n

)
tn = ec log(1+t) =

∞∑
n=0

cn

n!

( ∞∑
m=1

(−1)m−1tm

m

)n

,

so the formal power series
∑∞

n=0

(
c
n

)
Zn and

∑∞
n=0

cn

n!

(∑∞
m=1

(−1)m−1Zm

m

)n
in Z are

equal, from which the identity claimed about z follows by substitution.

Corollary 2.2. Let c ∈ R \ {−1} and ε ∈ OT. Then there is a unique z ∈ OT with

(1 + z)c · (1 + ε+ z) = 1.

Proof. Note that Q(Z) :=
(∑

n

(
c
n

)
Zn
)
(1 + ε + Z) − 1 satisfies the assumption of

Lemma 2.1: its constant term is ε and its term of degree 1 is (1 + c+ cε)Z. □

3. Relative Differential Closure

Let K ⊆ L be an extension of differential fields, and let r range over N. We say
that K is r-differentially closed in L for every P ∈ K{Y }̸= of order ⩽ r, each
zero of P in L lies in K. We also say that K is weakly r-differentially closed
in L if every P ∈ K{Y } ̸= of order ⩽ r with a zero in L has a zero in K. We
abbreviate “r-differentially closed” by “r-d-closed.” Thus

K is r-d-closed in L =⇒ K is weakly r-d-closed in L,

and

K is 0-d-closed in L ⇐⇒ K is weakly 0-d-closed in L(3.1)

⇐⇒ K is algebraically closed in L.

Hence, with C the constant field of K and CL the constant field of L:

(3.2) K is weakly 0-d-closed in L =⇒ C is algebraically closed in CL.

Also, if K is weakly 0-d-closed in L and L is algebraically closed, then K is alge-
braically closed, and similarly with “real closed” in place of “algebraically closed”.
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In [ADH, 5.8] we defined K to be weakly r-d-closed if every P ∈ K{Y } \K of or-
der ⩽ r has a zero in K. Thus if K is weakly 0-d-closed, then K is algebraically
closed, and

K is weakly r-d-closed ⇐⇒
{

K is weakly r-d-closed in every differential field
extension of K.

If K is weakly r-d-closed in L, then P (K) = P (L) ∩ K for all P ∈ K{Y } of
order ⩽ r; in particular,

(3.3) K is weakly 1-d-closed in L =⇒ ∂K = ∂L ∩K.
Also,

(3.4) K is 1-d-closed in L =⇒ C = CL and K† = L† ∩K.
Moreover:

Lemma 3.1. Suppose K is weakly r-d-closed in L. If L is r-linearly surjective,
then so is K, and if L is (r + 1)-linearly closed, then so is K.

Proof. The first claim from the remarks preceding the lemma, and the proof of the
second statement is like that of [ADH, 5.8.9]. □

Sometimes we get more than we bargained for:

Lemma 3.2. Suppose K is not algebraically closed, C ̸= K, and K is weakly
r-d-closed in L. Let Q1, . . . , Qm ∈ K{Y } ̸= of order ⩽ r have a common zero
in L, m ⩾ 1. Then they have a common zero in K.

Proof. We claim that some polynomial Φ ∈ K[X1, . . . , Xm] has (0, . . . , 0) ∈ Km as
its only zero in Km. (This is folklore, but we didn’t find a proof in the literature.)
The claim is clear for m = 1. Since K is not algebraically closed, we have a
univariate polynomial f ∈ K[X] of degree > 1 without a zero in K. Then the
homogenization g(X,Y ) ∈ K[X,Y ] of f(X) has (0, 0) as its only zero in K2. This
proves the claim for m = 2. Now use induction on m: if Φ has the above property,
then g

(
Φ(X1, . . . , Xm), Xm+1

)
has (0, . . . , 0, 0) ∈ Km+1 as its only zero in Km+1.

By the claim, the differential polynomial P := Φ(Q1, . . . , Qm) ∈ K{Y } is
nonzero (use [ADH, 4.2.1]) and has order ⩽ r. For y ∈ L we have

Q1(y) = · · · = Qm(y) = 0 =⇒ P (y) = 0,

and for y ∈ K the converse of this implication also holds. □

Here is a characterization of r-d-closedness:

Lemma 3.3. The following are equivalent:

(i) K is r-d-closed in L;
(ii) there is no differential subfield E of L with K ⊂ E and trdeg(E|K) ⩽ r.

Proof. Let E be a differential subfield of L with E ⊇ K and trdeg(E|K) ⩽ r.
Then for y ∈ E we have trdeg(K⟨y⟩|K) ⩽ trdeg(E|K) ⩽ r, so [ADH, 4.1.11] gives
a P ∈ K{Y }̸= of order ⩽ r with P (y) = 0, hence y ∈ K ifK is r-d-closed in L. This
shows (i) ⇒ (ii). For the converse, note that for P ∈ K{Y }̸= of order ⩽ r and y ∈ L
with P (y) = 0 we have K⟨y⟩ = K(y, y′, . . . , y(r)), so trdeg(K⟨y⟩|K) ⩽ r. □

Corollary 3.4. If K is r-d-closed in L, then K is r-d-closed in each differential
subfield of L containing K. If M is a differential field extension of L such that L
is r-d-closed in M and K is r-d-closed in L, then K is r-d-closed in M .
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We say that K is differentially closed in L if K is r-d-closed in L for each r,
and similarly we define when K is weakly differentially closed in L. We also
use “d-closed” to abbreviate “differentially closed”. If K, as a differential ring, is
existentially closed in L, then K is weakly d-closed in L. The elements of L that are
d-algebraic over K form the smallest differential subfield of L containing K which is
d-closed in L; we call it the differential closure (“d-closure” for short) of K in L.
Thus K is d-closed in L iff no d-subfield of L properly containing K is d-algebraic
over K. For example, if L = K⟨B⟩ where B ⊆ K is d-algebraically independent
over K [ADH, p. 205], then K is d-closed in L by Corollary 3.4 and [ADH, 4.1.5].
This notion of being differentially closed does not seem prominent in the differential
algebra literature, though the definition occurs (as “differentially algebraic closure”)
in [36, p. 102]. Here is a useful fact about it:

Lemma 3.5. Let F be a differential field extension of L and let E be a subfield
of F containing K such that E is algebraic over K and F = L(E).

F = L(E)

E

pppp
L

MMMM

K

OOOOOO
oooooo

Then K is d-closed in L iff E ∩ L = K and E is d-closed in F .

Proof. Suppose K is d-closed in L. Then K is algebraically closed in L, so L is lin-
early disjoint from E overK. (See [37, Chapter VIII, §4].) In particular E ∩ L = K.
Now let y ∈ F be d-algebraic over E; we claim that y ∈ E. Note that y is d-algebraic
over K. Take a field extension E0 ⊆ E of K with [E0 : K] < ∞ (so E0 is a d-
subfield of E) such that y ∈ L(E0); replacing E, F by E0, L(E0), respectively, we
arrange that n := [E : K] < ∞. Let b1, . . . , bn be a basis of the K-linear space E;
then b1, . . . , bn is also a basis of the L-linear space F . Let σ1, . . . , σn be the distinct
field embeddings F → La over L. Then the vectors(

σ1(b1), . . . , σ1(bn)
)
, . . . ,

(
σn(b1), . . . , σn(bn)

)
∈ (La)n

are La-linearly independent [37, Chapter VI, Theorem 4.1]. Let a1, . . . , an ∈ L be
such that y = a1b1 + · · ·+ anbn. Then

σj(y) = a1σj(b1) + · · ·+ anσj(bn) for j = 1, . . . , n,

hence by Cramer’s Rule,

a1, . . . , an ∈ K
(
σj(y), σj(bi) : i, j = 1, . . . , n

)
.

Therefore a1, . . . , an are d-algebraic overK, since σj(y) and σj(bi) for i, j = 1, . . . , n
are. Hence a1, . . . , an ∈ K since K is d-closed in L, so y ∈ E as claimed. This
shows the forward implication. The backward direction is clear. □

Corollary 3.6. If −1 is not a square in L and i in a differential field extension
of L satisfies i2 = −1, then: K is d-closed in L ⇔ K[i] is d-closed in L[i].

The notion of d-closedness concerns one-variable differential polynomials, but under
extra assumptions on the differential field extension K ⊆ L, it has consequences
for systems of differential polynomial (in-)equalities in several indeterminates, by
the next lemma. First some notation: for P ∈ K{Y }, Y a single indeterminate, we
let Z(P ) denote the set of zeros of P in K:

Z(P ) = ZK(P ) :=
{
y ∈ K : P (y) = 0

}
.
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Let S ⊆ Kn be defined in K by a quantifier-free formula ϕ(y1, . . . , yn) in the
language of differential fields with names for the elements of K, and let SL ⊆ Ln

be defined in L by the same formula. Then S = SL ∩Kn, and if K is existentially
closed in L, then SL does not depend on the choice of ϕ.

Suppose C ̸= K. Then we defined in [3, Section 1] for any set S ⊆ Kn its
(differential) dimension dimS ∈ {−∞, 0, 1, 2, . . . , n}, with dimS = −∞ iff S = ∅.
If S ̸= ∅ and S is finite, then dimS = 0, and if S ⊆ K, then dimS = 0 iff S ̸= ∅
and S ⊆ Z(P ) for some P ∈ K{Y }̸=.
Lemma 3.7. Suppose that C ̸= K, that K is both existentially closed in L and
d-closed in L, and that dimS = 0. Then S = SL.

Proof. Since K is existentially closed in L, [ADH, B.8.5] yields a differential field
extension K∗ of L such that K ≼ K∗. For i = 1, . . . , n and the ith coordinate
projection πi : K

n → K we have dimπi(S) = 0 and therefore πi(S) ⊆ Z(Pi)
with Pi ∈ K{Y }̸=, by [3, Lemma 1.2], so S ⊆ Z(P1)× · · · × Z(Pn), hence

SK∗ ⊆ ZK∗(P1)× · · · × ZK∗(Pn) since K ≼ K∗, and thus

SL = SK∗ ∩ Ln ⊆ ZL(P1)× · · · × ZL(Pn) ⊆ Kn since K is d-closed in L.

Thus S = SL. □

Recall from [ADH, 4.7] that K is said to be d-closed if for all P ∈ K[Y, . . . , Y (r)] ̸=

and Q ∈ K[Y, . . . , Y (r−1)] ̸= such that Y (r) occurs in P there is a y ∈ K such
that P (y) = 0 and Q(y) ̸= 0. (For r = 0 this says that K is algebraically closed.)
If K is d-closed in L and L is d-closed, then K is d-closed. Therefore, since K has a
d-closed differential field extension (cf. [ADH, remark after 4.7.1]): if K is d-closed
in each differential field extension, then K is d-closed. The reverse implication,
however, is false: if C is algebraically closed, then K has a proper d-algebraic
differential field extension L, even with CL = C. To see this we use the theorem of
Rosenlicht [44, Proposition 2] below. We equip the field C(Y ) of rational functions
over the constant field C of K with the derivation ∂ = ∂/∂Y [ADH, p. 200].

Theorem 3.8 (Rosenlicht). Let R ∈ C(Y )× be such that 1/R is neither of the
form a ∂U

U (a ∈ C,U ∈ C(Y )×), nor of the form ∂V (V ∈ C(Y )×). Let y be an
element of a differential field extension of K such that y is transcendental over K
and y′ = R(y). Then CK⟨y⟩ = C.

Let c ∈ C and consider the differential polynomial P = Pc ∈ K{Y } and the rational
function R = Rc ∈ C(Y ) given by

P (Y ) := Y ′(c(Y +1)+Y
)
−Y (Y +1) ∈ K{Y }, R(Y ) :=

Y (Y + 1)

c(Y + 1) + Y
∈ C(Y ).

For y /∈ K in a differential field extension of K we have P (y) = 0 iff y′ = R(y). We
identify Q with the prime field of C, as usual. Suppose c /∈ Q. Then R satisfies the
hypotheses of Theorem 3.8: First,

1

R
=

1

Y + 1
+

c

Y
.

Next, if 1
R = a ∂U

U , a ∈ C×, U ∈ C(Y )×, then by [ADH, 4.1.3] and [37, Chap-
ter V, Theorem 5.2] both 1/a and c/a are integers, hence c ∈ Q, a contradiction.
Equip E := C(Y ) with the valuation v : E× → Z with v(C×) = {0} and v(Y ) = 1.
Then E is d-valued with ΨE = {−1}. Since v(1/R) = −1, there is also no V ∈ E×

with ∂V = 1/R. For the constant field C of K this yields by Theorem 3.8:
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Corollary 3.9. Let c ∈ C \ Q. Then P (y) = 0 for some y in a differential field
extension of K and transcendental over K; for any such y we have CK⟨y⟩ = C.

4. Revisiting [ADH, 16.0.3]

The following important fact about closed H-fields stands in marked contrast to
Corollary 3.9. It is [ADH, 16.0.3], and was applied in [3] to gain information about
the zero sets of differential polynomials in closed H-fields:

Theorem 4.1. Every closed H-field is d-closed in every H-field extension with the
same constant field.

Any pre-H-field extension of an H-field with the same residue field is automatically
an H-field with the same constant field, so in Theorem 4.1 we can replace “H-field
extension with the same constant field” by “pre-H-field extension with the same
residue field”. But we cannot further weaken this to “pre-H-field extension with
the same constant field” as we show in the next subsection. (This justifies a remark
in [ADH, “Notes and comments” on p. 684].)

How not to use Theorem 4.1. We work in the differential field T of transseries.
Let c ∈ R>, and let P = Pc ∈ R{Y } be as introduced at the end of the previous
section11. Note that P (0) = P (−1) = 0. Let y ∈ T \ {0,−1} and put

U(y) := |y|c(y + 1) ∈ T×,

so

U(y)† = c
y′

y
+

y′

y + 1
= y′ · c(y + 1) + y

y(y + 1)

and therefore

P (y) = 0 ⇐⇒ U(y)† = 1

⇐⇒ U(y) ∈ R× ex

⇐⇒ |y|c(y + 1) = a ex for some a ∈ R×.

Hence y ≻ 1 whenever P (y) = 0. More precisely:

Lemma 4.2. Let a ∈ R×, y ∈ T× with |y|c(y + 1) = a ex. Then y ∼ b ex/(c+1)

where b = a1/(c+1) if a > 0 and b = −(−a)1/(c+1) if a < 0.

Proof. Note that |y|cy ∼ |y|c(1 + y) = a ex. Hence if a > 0, then y > 0 and y ∼
b ex/(c+1) with b := a1/(c+1), and if a < 0, then y < 0 and (−y)c+1 ∼ −a ex,
thus y ∼ b e1/(c+1) for b := −(−a)1/(c+1). □

In the next lemma we let b ∈ R×, and for z ∈ T, z ≺ 1 we set

Q(z) := (1 + z)c(1 + ε+ z)− 1 where ε := b−1 e−x/(c+1) ≺ 1.

Lemma 4.3. Let y = b ex/(c+1)(1+ z) where z ≺ 1. Then P (y) = 0 ⇐⇒ Q(z) = 0.

Proof. We have |y|c(y+1) = |b|cb ex
(
Q(z)+1

)
and Q(z)+1 ∼ 1. Assume P (y) = 0,

and take a ∈ R× such that |y|c(y + 1) = a ex. Then a = |b|cb and Q(z) = 0.
Conversely, if Q(z) = 0, then |y|c(y + 1) = a ex for a := |b|cb and so P (y) = 0. □

Combining Corollary 2.2 with the previous lemma yields:

Corollary 4.4. For each b ∈ R× there is a unique y ∈ T× such that P (y) = 0
and y ∼ b ex/(c+1).
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Let H be a prime model of the theory of closed H-fields with small derivation,
and identify H with an ordered valued differential subfield of T; see [ADH, p. 705].
The constant field C of H is the real closure of Q in R. Take c ∈ C>. Since H is
Liouville closed, we have d ∈ R> with f := d ex/(c+1) ∈ H>. Suppose also c /∈ Q
and let b ∈ R \C. Then Corollary 4.4 gives y ∈ T× such that P (y) = 0 and y ∼ bf .
So H⟨y⟩ is a pre-H-subfield of T with y /∈ H, and CH⟨y⟩ = C by Corollary 3.9.
Hence H⟨y⟩ ⊇ H is an example of a proper d-algebraic pre-H-field extension of
a closed H-field with the same constant field, as promised after Theorem 4.1. A
similar argument gives an analogue of Corollary 3.9 in the category of H-fields:

Corollary 4.5. Let H ⊆ E be an extension of closed H-fields with small derivation
such that CE ̸= C, and let c ∈ C>. Then Pc(y) = 0 for some y ∈ E \ H, and
if c /∈ Q, then for any such y we have CH⟨y⟩ = C.

Proof. Take f ∈ H× with f† = 1/(c+ 1). Since E ≡ T, there is for each b ∈ C×
E a

unique y ∈ E× with Pc(y) = 0 and y ∼ bf . Taking b ∈ CE\C, this y satisfies y /∈ H,
with CH⟨y⟩ = C if also c /∈ Q, by Corollary 3.9. □

Example. Let H := Tx := R[[[x]]] be the field of transseries in x over R and let E :=
Tu[[[x]]] be the field of transseries in x over the field of transseries Tu := R[[[u]]] in a
second variable u (elements in Tu being constants for the derivation d

dx ). We refer

to [33] for the construction of transseries12 over an arbitrary exponential ordered
constant field like Tu

13. It is also shown there that both H and E are Liouville
closed and satisfy DIVP and so are H-closed by [5, Theorem 2.7]. Now by what
precedes, there is a unique y ∈ E\H with Pc(y) = 0, y ∼ u ex/(c+1), and CH⟨y⟩ = R.

In the rest of this subsectionH is a closedH-field with small derivation and constant
field C. In [3, Section 5] we called a definable set S ⊆ Hn parametrizable by
constants if there are a semialgebraic set X ⊆ Cm, for some m, and a definable
bijection X → S. Lemma 4.2, Corollary 4.4, and H ≡ T yield:

Corollary 4.6. For every c ∈ C> the definable set Z(Pc) ⊆ H is parametrizable
by constants.

In [3, Section 5] an irreducible differential polynomial Q ∈ H{Y } ̸= was said to
create a constant if for some element y in a differential field extension of H with
minimal annihilator Q over H we have CH⟨y⟩ ̸= C. We showed that for such Q,
if order(Q) = 1, then Z(Q) is parametrizable by constants [3, Proposition 5.4].
If c /∈ Q in Corollary 4.6, then the irreducible differential polynomial Pc ∈ H{Y } of
order 1 is parametrizable by constants, yet does not create a constant. Nonetheless,
it does create a constant in the following more liberal sense.

Proposition 4.7. Let E be a closed H-field extension of H and let y ∈ E \H be
d-algebraic over H. Then some c ∈ CE \ C is definable in E over H ∪ {y}.

Proof. The definable closure K of H ∪ {y} in E is a differential subfield, even an
H-subfield of E: if u ∈ K and u ≍ 1, then u ∼ c for a unique c ∈ CE , so c ∈ K for
this c. It remains to note that the constant field of K is strictly larger than that
of H, by Theorem 4.1 and our assumption that y ∈ K \H is d-algebraic over H. □

Generalizing Theorem 4.1. In this subsection K is a d-valued field of H-type
with algebraically closed constant field C and divisible group K† of logarithmic
derivatives. We use spectral extensions to prove an analogue of Theorem 4.1:
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Theorem 4.8. Suppose K is ω-free and newtonian. Then K is d-closed in each
d-valued field extension L of H-type with CL = C and L† ∩K = K†.

This yields a generalization of Theorem 4.1:

Corollary 4.9. Let H be an ω-free newtonian real closed H-field and E be an
H-field extension of H. Then H is d-closed in E iff CE = CH and E† ∩H = H†.

Proof. The “only if” direction holds by (3.4). Suppose CE = CH and E†∩H = H†;
we need to show that H is d-closed in E. Replacing E by its real closure and using
Lemma 1.5 and Corollary 3.6, it suffices to show that the d-valued field K := H[i]
is d-closed in its d-valued field extension L := E[i]. By [ADH, 11.7.23, 14.5.7], K
is ω-free and newtonian. Also CL = CE [i] = CH [i] = C. Moreover, by Lemma 1.6,

L† ∩K = (E† ∩H)⊕ I(H)i = H† ⊕ I(H)i = K†.

Now use Theorem 4.8. □

In the same way that [ADH, 16.0.3] follows from [ADH, 16.1.1], Theorem 4.8 follows
from an analogue of [ADH, 16.1.1]:

Lemma 4.10. Let K be an ω-free newtonian d-valued field, L a d-valued field
extension of K of H-type with CL = C and L† ∩ K = K†, and let f ∈ L \ K.
Suppose there is no y ∈ K⟨f⟩ \K such that K⟨y⟩ is an immediate extension of K.
Then the Q-linear space QΓK⟨f⟩/Γ is infinite-dimensional.

The proof of Lemma 4.10 is much like that of [ADH, 16.1.1], except where the latter
uses that any b in a Liouville closed H-field equals a† for some nonzero a in that
field. This might not work with elements of K, and the remedy is to take instead
for every b ∈ K an element a in U× with b = a†. The relevant computation should
then take place in the differential fraction field ΩL of UL instead of in L where ΩL

is equipped with a spectral extension of the valuation of L. For all this to make
sense, we first take an active ϕ in K and replace K and L by Kϕ and Lϕ, arranging
in this way that the derivation of L (and of K) is small. Next we replace L by
its algebraic closure, so that L† is divisible, while preserving L† ∩K = K† by [8,
Lemma 1.2.1], and also preserving the other conditions on L in Lemma 4.10, as well
as the derivation of L being small. This allows us to identify U with a differential
subring of ULand accordingly Ω with a differential subfield of ΩL. We equip ΩL

with a spectral extension of the valuation of L and make Ω a valued subfield of ΩL.
Then the valuation of Ω is a spectral extension of the valuation of K to Ω, so we
have the following inclusions of d-valued fields:

L // ΩL

K

OO

// Ω

OO

With these preparations we can now give the proof of Lemma 4.10:

Proof. As we just indicated we arrange that L is algebraically closed with small
derivation, and with an inclusion diagram of d-valued fields involving Ω and ΩL, as
above. (This will not be used until we arrive at the Claim below.)

By [ADH, 14.0.2], K is asymptotically d-algebraically maximal. Using this and
the assumption about K⟨f⟩ it follows as in the proof of [ADH, 16.1.1] that there is
no divergent pc-sequence inK with a pseudolimit inK⟨f⟩. Thus every y inK⟨f⟩\K
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has a a best approximation in K, that is, an element b ∈ K such that v(y − b) =
max v(y −K). For such b we have v(y − b) /∈ Γ, since CL = C.

Now pick a best approximation b0 in K to f0 := f , and set f1 := (f0 − b0)
†.

Then f1 ∈ K⟨f⟩ \K, since L† ∩K = K† and C = CL. Thus f1 has a best approx-
imation b1 in K, and continuing this way, we obtain a sequence (fn) in K⟨f⟩ \K
and a sequence (bn) in K, such that bn is a best approximation in K to fn
and fn+1 = (fn − bn)

† for all n. Thus v(fn − bn) ∈ ΓK⟨f⟩ \ Γ for all n.

Claim: v(f0 − b0), v(f1 − b1), v(f2 − b2), . . . are Q-linearly independent over Γ.

To prove this claim, take an ∈ U× with a†n = bn for n ⩾ 1. Then in ΩL,

fn − bn = (fn−1 − bn−1)
† − a†n =

(
fn−1 − bn−1

an

)†

(n ⩾ 1).

With ψ := ψΩL
and αn = v(an) ∈ ΓΩ ⊆ ΓΩL

for n ⩾ 1, we get

v(fn − bn) = ψ
(
v(fn−1 − bn−1)− αn

)
, so by an easy induction on n,

v(fn − bn) = ψα1,...,αn

(
v(f0 − b0)

)
(n ⩾ 1).

(The definition of the functions ψα1,...,αn
is given just before [ADH, 9.9.2].) Suppose

towards a contradiction that v(f0 − b0), . . . , v(fn − bn) are Q-linearly dependent
over Γ. Then we have m < n and q1, . . . , qn−m ∈ Q such that

v(fm − bm) + q1v(fm+1 − bm+1) + · · ·+ qn−mv(fn − bn) ∈ Γ.

For γ := v(fm − bm) ∈ ΓL \ Γ this gives

γ + q1ψαm+1
(γ) + · · ·+ qn−mψαm+1,...,αn

(γ) ∈ Γ.

By [ADH, 14.2.5] we have I(K) ⊆ K†, so the H-asymptotic couple of Ω is closed
with ΨΩ ⊆ Γ, by Lemma 1.7. Hence γ ∈ ΓΩ by [ADH, 9.9.2]. Together with ΨΩ ⊆ Γ
and αm+1, . . . , αn ∈ ΓΩ this gives ψαm+1(γ), . . . , ψαm+1,...,αn(γ) ∈ Γ and thus γ ∈ Γ,
a contradiction. □

We augment the language L≼ = {0, 1,−,+, · , ∂,≼} of valued differential rings
by a unary relation symbol to obtain the language Lc. We construe each valued
differential field as an Lc-structure by interpreting the new relation symbol as its
constant field. In [3, Proposition 6.2] we showed that if H is a closed H-field, then
a nonempty definable set S ⊆ Hn is co-analyzable (relative to CH) iff dimS = 0.
(See Section 6 of [3] for the definition of “co-analyzable”14.) This used Theorem 4.1
and a model-theoretic test for co-analyzability from [31] (cf. [3, Proposition 6.1]).
From Corollary 4.9 we obtain a partial generalization of this fact:

Corollary 4.11. Let H be an ω-free newtonian real closed H-field. If S ⊆ Hn

and dimS = 0, then S is co-analyzable.

Proof. If E is an elementary extension of H, then E† ∩ H = H†. Hence for
each P ∈ H{Y }̸=, the zero set Z(P ) ⊆ H is co-analyzable by Corollary 4.9 and
by [3, Proposition 6.1] applied to the Lc,A-theory Th(HA) where A is the finite
set of nonzero coefficients of P . This special case implies the general case, since
for each S ⊆ Hn with dimS = 0 there are P1, . . . , Pn ∈ H{Y }̸= such that S is
contained in Z(P1)× · · · × Z(Pn). □

Likewise, using Theorem 4.8 instead of Corollary 4.9 yields:



RELATIVE DIFFERENTIAL CLOSURE IN HARDY FIELDS 17

Corollary 4.12. If K is ω-free and newtonian, then each set S ⊆ Kn such
that dimS = 0 is co-analyzable.

Thus for K, S as in Corollary 4.12 and countable C, all S ⊆ Kn of dimension 0 are
countable, by [3, Proposition 6.1]. Note that Corollary 4.11 applies to the valued
differential field Tlog of logarithmic transseries from [ADH, Appendix A]15.

5. Relative Differential Closure in H-fields

In this section we turn to relative differential closure in the H-field setting, and
we use Theorem 4.1 to relate d-closedness to the elementary substructure property
and d-closure to Newton-Liouville closure.

Let L∂ = {0, 1,−,+, · , ∂} be the language of differential rings, a sublanguage
of the language L := L∂ ∪ {⩽,≼} of ordered valued differential rings (see [ADH,
p. 678]). In this section we also let M be an H-closed field and H a pre-H-
subfield of M whose valuation ring and constant field we denote by O and C.
Construing H and M as L-structures in the usual way, H is an L-substructure
of M . We also use the sublanguage L≼ := L∂ ∪ {≼} of L, so L≼ is the language of
valued differential rings. We expand the L∂-structure H[i] to an L≼-structure by
interpreting ≼ as the dominance relation associated to the valuation ring O + Oi
of H[i]; we expand likewise M [i] to an L≼-structure by interpreting ≼ as the
dominance relation associated to the valuation ring OM [i] = OM + OM i of M [i].
Then H[i] is an L≼-substructure of M [i]. By H ≼L M we mean that H is an
elementary L-substructure of M , and we use expressions like “H[i] ≼L≼ M [i]” in
the same way; of course, the two uses of the symbol ≼ in the latter are unrelated.

By Corollary 3.6, H is d-closed in M iff H[i] is d-closed in M [i].

Lemma 5.1. Suppose M has small derivation. Then

H ≼L∂
M ⇐⇒ H[i] ≼L∂

M [i].

Also, if H ≼L∂
M , then H ≼L M and H[i] ≼L≼ M [i].

Proof. The forward direction in the equivalence is obvious. For the converse,
let H[i] ≼L∂

M [i]. We have M ≡L∂
T by [ADH, 16.6.3]. Then [ADH, 10.7.10]

yields an L∂-formula definingM inM [i], so the same formula definesM ∩H[i] = H
in H[i], and thus H ≼L∂

M . For the “also” part, use that the squares of M are the
nonnegative elements in its ordering, that OM is then definable as the convex hull
of CM in M with respect to this ordering, and if H ≼L∂

M , then each L∂-formula
defining OM in M also defines O = OM ∩H in H. □

By [ADH, 14.5.7, 14.5.3], if H is H-closed, then H[i] is weakly d-closed. The next
proposition complements Theorem 4.1 and [ADH, 16.2.5]:

Proposition 5.2. The following are equivalent:

(i) H is d-closed in M ;
(ii) C = CM and H ≼L M ;
(iii) C = CM and H is H-closed.

First a lemma, where extension refers to an extension of valued differential fields,
and where r ∈ N.

Lemma 5.3. Let K be a λ-free H-asymptotic field which is r-d-closed in an r-
newtonian ungrounded H-asymptotic extension L. Then K is also r-newtonian.
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Proof. Let P ∈ K{Y }̸= be quasilinear of order ⩽ r. Then P remains quasilinear
when viewed as differential polynomial over L, by [8, Lemma 1.7.9]. Hence P has
a zero y ≼ 1 in L, which lies in K since K is r-d-closed in L. □

Proof of Proposition 5.2. Assume (i). Then C = CM and H is a Liouville closed
H-field, by (3.2), (3.3), and (3.4). We have ω(M)∩H = ω(H) since H is weakly 1-
d-closed in M , and σ

(
Γ(M)

)
∩H = σ

(
Γ(M)∩H

)
= σ

(
Γ(H)

)
since H is 2-d-closed

in M and Γ(M) ∩H = Γ(H) by [ADH, p. 520]. Now M is Schwarz closed [ADH,
14.2.20], so M = ω(M) ∪ σ

(
Γ(M)

)
, hence also H = ω(H) ∪ σ

(
Γ(H)

)
, thus H is

Schwarz closed [ADH, 11.8.33]; in particular, H is ω-free. By Lemma 5.3, H is
newtonian. This shows (i) ⇒ (iii). The implication (iii) ⇒ (i) is Theorem 4.1,
and (iii) ⇔ (ii) follows from [ADH, 16.2.5]. □

Next a consequence of [ADH, 16.2.1], but note first that H(CM ) is an H-subfield
of M and d-algebraic over H, and recall that each ω-free H-field has a Newton-
Liouville closure, as defined in [ADH, p. 669].

M

H(CM )

CM

sssss
H

IIIII

Corollary 5.4. If H is ω-free, then the differential closure of H in M is a New-
ton-Liouville closure of the ω-free H-subfield H(CM ) of M .

For (pre-)ΛΩ-fields, see [ADH, 16.3], and for the Newton-Liouville closure of a
pre-ΛΩ-field see [ADH, 16.4.8]. Let M be the expansion of M to a ΛΩ-field,
and let H, H(CM ) be the expansions of H, H(CM ), respectively, to pre-ΛΩ-
subfields of M ; then H(CM ) is a ΛΩ-field. By Proposition 5.2, the d-closure Hda

of H in M is H-closed and hence has a unique expansion Hda to a ΛΩ-field.
Then H ⊆ H(CM ) ⊆ Hda ⊆ M .

Corollary 5.5. The ΛΩ-field Hda is a Newton-Liouville closure of H(CM ).

Proof. Let H(CM )nl be a Newton-Liouville closure of H(CM ). Since Hda is H-

closed and extends H(CM ), there is an embedding H(CM )nl → Hda over H(CM ),
and any such embedding is an isomorphism, thanks to Theorem 4.1. □

6. Relative Differential Closure in Hardy Fields

Specializing now to Hardy fields, assume in this section that H is a Hardy field
and set K := H[i] ⊆ C<∞[i], an H-asymptotic extension of H. By definition, H is
d-maximal iff H is d-closed in every Hardy field extension of H. Moreover:

Corollary 6.1. The following are equivalent:

(i) H ⊇ R and H is H-closed;
(ii) H is d-maximal;
(iii) H is d-closed in some d-maximal Hardy field extension of H.

If one of these conditions holds, then K is weakly d-closed.

Proof. The equivalence (i) ⇔ (ii) is part of Theorem 1.3, (ii) ⇒ (iii) is trivial, and
its converse holds by (i) ⇔ (ii) and Proposition 5.2. For the rest, use the remark
before Proposition 5.2. □
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Thus by Corollary 3.6:

Corollary 6.2. If H is d-maximal and E is a Hardy field extension of H, then K
is d-closed in E[i].

Using Theorem 4.8 we can strengthen Corollary 6.2:

Corollary 6.3. Suppose H is d-maximal and L ⊇ K is a differential subfield
of C<∞[i] such that L is a d-valued H-asymptotic extension of K with respect to
some dominance relation on L. Then K is d-closed in L.

Proof. The d-valued field K is ω-free and newtonian by [ADH, 11.7.23, 14.5.7].
Also L† ∩K = K† by Corollary 1.11. Now apply Theorem 4.8. □

We do not require the dominance relation on L in Corollary 6.3 to be the restriction
to L of the relation ≼ on C[i].

A differential subfield L of C<∞[i] is said to come from a Hardy field if L = E[i]
for some Hardy field E. By [7, Section 2] this is equivalent to: i ∈ L and
Re f, Im f ∈ L for all f ∈ L. Corollary 6.3 for L coming from a Hardy field
falls under Corollary 6.2. However, not every differential subfield of C<∞[i] con-
taining C comes from a Hardy field: [7, Section 5] has an example of a differential
subfield L ⊇ C of Cω[i] not coming from a Hardy field, yet the relation ≼ on C[i]
restricts to a dominance relation on L making L a d-valued field of H-type. In
the next example (not used later) we employ a variant of this construction to ob-
tain H, K, L as in Corollary 6.3 where L equipped with the restriction of ≼ is a
d-valued field of H-type, but L doesn’t come from a Hardy field:

Example. Let M be a maximal Hardy field. Then M is H-closed by Corollary 1.4,
the d-closureH of R inM is a d-maximal Hardy field by Corollary 6.1, and no h ∈ H
is transexponential by [7, Lemma 5.1]. Theorem 1.3 in [16] (see also [7, Corol-
lary 5.24]) yields a transexponential z ∈ M . Take any h ∈ R(x) with 0 ̸= h ≺ 1,
and put y := z(1 + h exi) ∈ Cω[i]. Now z is H-hardian, so by [7, Lemma 5.16],
y generates a differential subfield L0 := H⟨y⟩ of Cω[i], and ≼ restricts to a dom-
inance relation on L0 which makes L0 a d-valued field of H-type with constant
field R. Then L := L0[i] is a differential subfield of Cω[i] with constant field C,
and ≼ on C[i] restricts to a dominance relation on L that makes L a d-valued field
of H-type extending K as a d-valued field and which does not come from a Hardy
field, since Im y = zh sinx oscillates. By Corollary 6.3, K is d-closed in L = K⟨y⟩.

The following is Theorem B from the introduction:

Corollary 6.4. Suppose H ⊃ R has DIVP, and E ⊇ H is a Hardy field. Then

H is d-closed in E ⇐⇒ E ∩ exp(H) ⊆ H.

Proof. By [5, Corollary 2.6], H is ω-free and newtonian. In particular, H is
closed under integration, by [ADH, 14.2.2]. Applying DIVP to ordinary poly-
nomials, we see that H is also real closed. It is clear that if H is d-closed in E,
then E ∩ exp(H) ⊆ H. Conversely, suppose that E ∩ exp(H) ⊆ H. If y ∈ E>

with y† ∈ H, then log y ∈ H and so y ∈ E∩exp(H) ⊆ H. This yields E†∩H = H†.
Hence H is d-closed in E by Corollary 4.9. □

Remarks. Suppose H ⊃ R has DIVP. Then H is closed under integration and real
closed by the proof of Corollary 6.4, so H is Liouville closed iff exp(H) ⊆ H. Thus
by [5, Corollary 2.6], if exp(H) ⊆ H, then H is H-closed. For an example of an
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analyticH ⊃ R with DIVP that is not Liouville closed, consider the specialization F
of T with respect to the convex subgroup

∆ :=
{
γ ∈ ΓT : |γ| ⩽ n v(x−1) for some n

}
of its value group ΓT = v(T×). Then F is an H-field with constant field R and
value group ∆, and F has DIVP but is not Liouville closed: see [1, Lemma 14.3
and subsequent remark]. By [ADH, 14.1.2, 15.0.2], the ∆-coarsening of the valued
differential field T is d-henselian, hence [ADH, 7.1.3] yields an embedding F → T
of differential fields that is the identity on R, and F and T being real closed, this is
even an embedding of ordered valued differential fields. Now T is isomorphic over R
to an analytic Hardy field containing R by [2, Corollary 7.9]. Hence F is isomorphic
to an analytic Hardy field H ⊃ R with DIVP that is not Liouville closed.

Recall from Section 1 that the d-perfect hull D(H) ofH is defined as the intersection
of all d-maximal Hardy field extensions of H. By the next result we only need to
consider here d-algebraic Hardy field extensions of H:

Corollary 6.5.

D(H) =
⋂{

M :M is a d-maximal d-algebraic Hardy field extension of H
}
.

Proof. We only need to show the inclusion “⊇”. So let f be an element of every
d-maximal d-algebraic Hardy field extension of H, and let M be any d-maximal
Hardy field extension of H; we need to show f ∈ M . Let E be the d-closure
of H in M . Then E is d-algebraic over H, and by Corollary 6.1, E is d-maximal.
Hence f ∈ E, and thus f ∈M as required. □

We can now also prove a variant of Lemma 1.1 for C∞- and Cω-Hardy fields:

Corollary 6.6. Suppose H is a C∞-Hardy field. Then

D(H) =
⋂{

M :M ⊇ H is a d-maximal C∞-Hardy field
}

=
{
f ∈ E∞(H) : f is d-algebraic over H

}
.

Likewise with ω in place of ∞.

Proof. With both equalities replaced by “⊆”, this follows from the definitions and
the remarks following Proposition 1.2. Let f ∈ E∞(H) be d-algebraic over H;
we claim that f ∈ D(H). To prove this claim, let E be a d-maximal Hardy field
extension E of H; it is enough to show that then f ∈ E. Now F := E ∩ C∞ is a
C∞-Hardy field extension of H which is d-closed in E, by Proposition 1.2, and hence
d-maximal by Corollary 6.1. Thus we may replace E by F to arrange that E ⊆ C∞,
and then take a C∞-maximal Hardy field extension M of E. Now f ∈ E∞(H)
gives f ∈M , and E being d-maximal and f being d-algebraic over E yields f ∈ E.
The proof for ω in place of ∞ is similar. □

We say that H is bounded if there is a germ ϕ ∈ C such that h ⩽ ϕ for all h ∈ H.
No maximal Hardy field, no maximal smooth Hardy field, and no maximal analytic
Hardy field is bounded. However, if H has countable cofinality (as ordered set),
then H is bounded. (See [7, Section 5].) If H is bounded, then E(H) is d-algebraic
over H (see [7, Theorem 5.20]) and hence D(H) = E(H) by Lemma 1.1. If in
addition H ⊆ C∞, then E∞(H) is also d-algebraic over H, and likewise with ω in
place of ∞ [7, Theorem 5.20]. Combined with Corollary 6.6, this yields:
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Corollary 6.7. If H ⊆ C∞ is bounded, then D(H) = E(H) = E∞(H). Likewise
with ω in place of ∞.

Let E := E(Q) be the perfect hull of the Hardy field Q. From Corollary 6.7 we
obtain the next result, which establishes Theorem A from the introduction:

Corollary 6.8. E = E∞(Q) = Eω(Q) = D(Q).

Question. Do the following implications hold for all H?

H ⊆ C∞ =⇒ E(H) ⊆ E∞(H), H ⊆ Cω =⇒ E(H) ⊆ E∞(H) ⊆ Eω(H).

These implications hold if D(H) = E(H), but we don’t know whether D(H) = E(H)
for all H; see also [15, p. 144].

By Theorem 6.9 below, each d-perfect Hardy field is 1-d-closed in all its Hardy field
extensions. Here, Y and Z are distinct indeterminates.

Theorem 6.9. Let P ∈ H[Y,Z ]̸=, and suppose y ∈ C1 lies in a Hausdorff field
extension of H and P (y, y′) = 0. Then y ∈ D(H).

This is stated in [15, Theorem 11.8], where the proof is only indicated; for a de-
tailed proof, see [6, Theorem 6.3.14]. Every d-maximal Hardy field is 1-newtonian
(Theorem 1.3 or [9, Lemma 11.12]). Together with Lemma 5.3, this yields:

Corollary 6.10. Every d-perfect Hardy field is 1-newtonian.

By Theorem 6.9 and Corollary 6.10, E is 1-d-closed in all its Hardy field extensions
and 1-newtonian. However, E is not 2-linearly surjective by [17, Proposition 3.7],
so E is not weakly 2-d-closed in any d-maximal Hardy field extension of E (see
Lemma 3.1) and E is not 2-linearly newtonian (see [ADH, 14.2.2]).

The material at the end of Section 5 has consequences for the relationship between
Newton-Liouville closure and d-closure in the context of Hardy fields. For this,
we recall from [9, Section 12] that every d-maximal Hardy field M has a unique
expansion to a ΛΩ-field M , and that every H has a unique expansion to a pre-ΛΩ-
field H such that H ⊆ M for all d-maximal Hardy fields M ⊇ H; we call H the
canonical ΛΩ-expansion of H.

Let now M be a d-maximal Hardy field extension of H and Hda the d-closure
of H in M , so H(R) ⊆ Hda ⊆M . From Corollary 5.4 we obtain:

Corollary 6.11. If H is ω-free, then Hda is a Newton-Liouville closure of H(R).
Next, let H(R), Hda, M be the canonical ΛΩ-expansions of the Hardy fields H(R),
Hda, M , respectively, so H(R) ⊆ Hda ⊆ M . Corollary 5.5 then yields:

Corollary 6.12. Hda is a Newton-Liouville closure of H(R).
We finish with an example justifying the remark after Theorem B:

Example. Let M be a maximal Hardy field, and let H and F be Newton-Liouville
closures of the canonical ΛΩ-expansions of the Hardy fields Q and Q(e), respec-
tively. We embed H and F in M in such a way that upon identifying H and F
with their images in M we have H ⊆ F ⊆ M for the corresponding underlying
differential fields. Now H ∩ F † = H ∩ F = H = H†, since H, F are Liouville
closed. The constant fields of H, F are the real closures in R of Q, Q(e), respec-
tively (see [ADH, proof of 16.4.9]), so CH ̸= CF . Corollary 4.5 yields a y ∈ F \H
that is d-algebraic over H with CE = CH for E := H⟨y⟩. If g ∈ E ∩ exp(H),
then g† ∈ H = H†, so g = ch where c ∈ C×

E and h ∈ H×, and hence g ∈ H
since CE = CH . Thus E ∩ exp(H) ⊆ H.
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Notes

1. The first edition (1910) of [30] was reviewed for this journal by Gödel’s PhD advisor Hahn [28].

2. Boshernitzan [14] (with details in [26]) first suggested an example of a non-smooth Hardy field.

Rolin, Speissegger, Wilkie [42] construct o-minimal expansions R̃ of the ordered field of real

numbers such that the Hardy field H consisting of the germs of functions R → R that are definable

in R̃ is smooth but not analytic. Le Gal and Rolin [38] construct such expansions such that the

corresponding Hardy field H is not smooth.

3. Gödel’s Completeness Theorem from his PhD thesis [25] is in the background of the model theoretic
tools used in proving the completeness of the theory of maximal Hardy fields, which in particular

entails the existence of a decision procedure for this theory.

4. The existence of a solution to this equation in each maximal Hardy field H follows from the above

theorem with P (Y ) = Y ′′ + Y − ex
2
, f = 0, and g = ex

2
.

5. The difference of two distinct solutions to the equation y′′ + y = ex
2
is a nonzero solution to the

homogeneous equation y + y′′ = 0 and thus oscillating.

6. This argument also suggests that there exist many maximal Hardy fields: in [10], we show that

there are actually 22
ℵ0 many.

7. For a construction and basic properties of the field of transseries, see [ADH, Appendix A]. A more

leisurely exposition is in [24].

8. A brief summary of work on No past Conway is in [50]. We also refer to [11] for an interpretation

of surreal numbers in terms of growth rates at infinity.

9. Let us mention here Hamkin’s historical thought experiment [29]: an early acceptance of CH as a

standard set-theoretic axiom alongside the usual ZFC axioms would presumably have promoted a
more wide-spread use of infinitesimals in the style of non-standard analysis, because CH guarantees

the existence of up-to-isomorphism unique saturated elementary extensions of the real field and its
expansions of size 2ℵ0 . (Without CH there is no such uniqueness.) We also note that Cantor [19,

VI] was hostile to Paul du Bois-Reymond’s infinitesimals, which are at the root of Hardy fields

and which put the “actual infinitesimal” on as solid a footing as Cantor’s “actual infinite”. Maybe
Cantor saw this as unwelcome competition.

10. See also [8] or the regularly updated page https://www.mat.univie.ac.at/~maschenbrenner/pdf/

mt-errata.pdf for a list of errata to [ADH].

11. The differential polynomial Pc studied here was inspired by an example attributed to McGrail
and Marker in [34, Example 2.20], and suggested to us by James Freitag.

12. The transseries from [33] are grid-based, subject to a stronger restriction than the well-based

transseries from [ADH, Appendix A]. In both cases these transseries form H-closed fields.

13. The requirement that the constant field comes with an exponential function is natural from the
transseries perspective in [33], but not required from an H-field perspective: mutatis mutandis,
the construction goes through for general ordered constant fields C, but the resulting H-field of
transseries T is just no longer closed under exponentiation. Nevertheless, it remains closed under

exponential integration and exponentiation for transseries without constant terms.

14. This terminology, coming from [31], is slightly unfortunate in our context in light of the important

role played by Écalle’s analyzable functions [23] in the theory of transseries.

15. Allen Gehret has a different proof that the zero set of each nonzero univariate differential poly-

nomial over Tlog is co-analyzable.

https://www.mat.univie.ac.at/~maschenbrenner/pdf/mt-errata.pdf
https://www.mat.univie.ac.at/~maschenbrenner/pdf/mt-errata.pdf
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