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We describe a new, highly optimized implementation of number theoretic transforms
on processors with SIMD support (AVX, AVX-512, and Neon). For any prime mod-
ulus p and any order of the form r=2i ⋅3 j |p−1, our implementation can automatically
generate a dedicated codelet to compute the number theoretic transform of order r
over 𝔽p. New speed-ups were achieved by relying heavily on non-normalized mod-
ular arithmetic and allowing for orders r that are not necessarily powers of two.
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1. INTRODUCTION

Number theoretic transforms (NTTs) were introduced by Pollard [21]. He used them
as a tool to design practical algorithms for the efficient multiplication of very large inte-
gers. Technically speaking, a number theoretic transform is simply a discrete Fourier
transform (DFT) over a finite field. Traditional DFTs work over the complex numbers.
A fast algorithm to compute such DFTs was published a few years earlier by Cooley and
Tukey [4], although the idea goes back to Gauss [14].

As of today, fast practical algorithms for multiplying large integers are based on
number theoretic transforms, complexDFTs [23, first algorithm], or Schönhage-Strassen's
algorithm [23, second algorithm]. All three strategies are very competitive and thewinner
depends on hardware and the application. Since the race is very close, it is interesting
to heavily optimize each of the three approaches.
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In this paper, we will describe a high performance implementation for number the-
oretic transforms. We focus on modern general purpose CPUs with support for SIMD
(Single InstructionMultiple Data) instructions. Our current implementationwaswritten
in MATHEMAGIX [17], partly as a test case for the development of our new compiler
(a 𝛽-version of it has been released this year). It fully exploits SIMD accelerations and
we started experimentations with multi-threading.

A first way to optimize NTTs is to design faster modular arithmetic. Let p be a prime
number. Traditionally, the result of any arithmetic operation modulo p is always nor-
malized, e.g. to make it lie in {0,...,p−1}. It was first observed by Harvey [13] that some
of these normalizations can be delayed when computing NTTs and that this can lead to
significant speed-ups. In section 3, we show how to take this idea one step further, which
allows us to delay even more normalizations.

While we were working on our implementation1, a few other implementations
appeared that use similar ideas. The delayed reduction strategy has been generalized
to 4-wide and 8-wide butterflies in [2, 24]. Dan Schultz recently added an optimized
implementation of this kind to the FLINT library [12]. We note that the idea to delay
normalizations is also very popular in linear algebra; see for instance [5, 6]. Another
inspiration and noteworthy analogue is the “transient ball arithmetic” that was devel-
oped in [18].

The optimization of traditional DFTs is the subject of an extensive literature. The
most efficient implementations are based on so-called “codelets” [8, 9, 22]. For a given
target order r, the idea is to automatically generate a highly optimized program (called
a codelet) for DFTs of order r. Such codelets can optimize the use of registers andmemory,
which makes them in particular cache-efficient. For small orders, we can also unroll
the loops, which minimizes the overhead of control structures. In section 4, we apply
the codelet approach to number theoretic transforms and discuss some specific issues
that arise for this application. Similar experiments have recently been carried out in the
SPIRAL system [10, 25].

The last section 5 is dedicated to timings. We implemented our algorithms on five
different systems that support SIMD arithmetic of three different widths: 128-bit (ARM
Neon), 256-bit (AVX-2), and 512-bit (AVX-512). For orders r⩽216, we achieve speed-ups
that are proportional to the SIMD width. For higher orders, the x86-based systems start
to suffer from memory access costs, whereas the performance of ARM-based systems
remains stable. We also experimented with multi-threaded versions of our algorithms,
but without pushing our optimization efforts as far as for the mono-threaded case.

The application of the fast NTTs to integer multiplication requires a wrapper for Chi-
nese remaindering and Kronecker segmentation. This turns out to be highly non-trivial
to implement with the same level of optimization as our new NTTs. We plan to address
this issue in a separate future work.

2. PRELIMINARIES

2.1. Discrete Fourier transforms
Let𝕂 be a field with a primitive root of unity𝜔 of order r and assume that r is invertible
in𝕂. We define the discrete Fourier transform (or DFT) of an r-tuple a=(a0, . . . ,ar−1)∈𝕂r

1. We started our implementation in 2019, but it remained private due to the experimental nature of the new MATH-
EMAGIX compiler.
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with respect to 𝜔 to be DFT𝜔(a)= â=(â0, . . . , âr−1)∈𝕂r where

âi ≔ a0+a1𝜔i+ ⋅ ⋅ ⋅ +ar−1𝜔(r−1)i.

That is, âi is the evaluation of the polynomial A(X)≔a0+a1X+ ⋅ ⋅ ⋅ +ar−1Xr−1 at 𝜔i. If 𝜔
is a primitive r-th root of unity, then so is its inverse 𝜔−1=𝜔r−1, and we have

DFT𝜔−1(DFT𝜔(a)) = r a. (1)

Indeed, writing b≔DFT𝜔−1(DFT𝜔(a)), we have

bi = �
j=0

r−1

âj𝜔−ji = �
j=0

r−1

�
k=0

r−1

ak𝜔 j(k−i) = �
k=0

r−1

ak�
j=0

r−1

𝜔 j(k−i) = �
k=0

r−1

ak (r𝛿i,k) = r ai,

where 𝛿i,k=1 if i=k and 𝛿i,k=0 otherwise.
The DFT induces a ring homomorphism from 𝕂[x]/(xr−1) into 𝕂r, by sending A=

a0+ ⋅ ⋅ ⋅ + ar−1 xr−1 to DFT𝜔(a). Since the DFT is invertible, this map (that we will still
denote by DFT𝜔) is actually an isomorphism. If we have a fast way to compute DFTs,
this yields an efficient way to multiply “cyclic” polynomials P,Q∈𝕂[x]/(xr−1):

PQ = DFT𝜔−1(DFT𝜔(P)DFT𝜔(Q)). (2)

Here the multiplication DFT𝜔(P)DFT𝜔(Q) in 𝕂r is done entry-wise. Given two polyno-
mials A,B∈𝕂[x] with degAB< r, we have

ABmod (xr−1) = (Amod (xr−1))(Bmod (xr−1))

and the product AB can be read off from ABmod (xr− 1). Hence we also obtained an
algorithm for the multiplication of A and B. This is called FFT-multiplication.

2.2. Divide-and-conquer DFTs
Let 𝜔 be a primitive r-th root of unity, with r= r1 r2 for 1< r1, r2< r. Then 𝜔2≔𝜔r1 is
a primitive r2-th root of unity and 𝜔1≔𝜔r2 is a primitive r1-th root of unity. Moreover,
for any i1∈{0, . . . , r1−1} and i2∈{0, . . . , r2−1}, we have

âi1r2+i2 = �
k1=0

r1−1

�
k2=0

r2−1

ak2r1+k1𝜔(k2r1+k1)(i1r2+i2)

= �
k1=0

r1−1

𝜔k1i2((((((((((((((((((
(�
k2=0

r2−1

ak2r1+k1(𝜔r1)k2i2))))))))))))))))))
) (𝜔r2)k1i1. (3)

This formula can be decomposed in four steps:

xi2r1+k1 ≔ �
k2=0

r2−1

ak2r1+k1𝜔2
k2i2 (4)

yi2r1+k1 ≔ 𝜔k1i2xi2r1+k1 (5)

zi2r1+i1 ≔ �
k1=0

r1−1

yi2r1+k1𝜔1
k1i1 (6)

âi1r2+i2 ≔ zi2r1+i1. (7)
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Given a linear map 𝜙:𝕂s→𝕂s and t∈ℕ, it will be convenient to use the Kronecker prod-
ucts 𝜙⊗Idt:𝕂st→𝕂st and Idt⊗𝜙:𝕂st→𝕂st, that are defined by

y = (𝜙⊗Idt)(x) ⟺ ∀i∈{0, . . . , t−1}, (yi, . . . ,y(s−1)t+i) = 𝜑(xi, . . . ,x(s−1)t+i)
y = (Idt⊗𝜙)(x) ⟺ ∀i∈{0, . . . , t−1}, (yis, . . . ,yis+s−1) = 𝜑(xis, . . . ,xis+s−1).

Using these notations, we may rewrite (4) and (6) as

x = (DFT𝜔2⊗Idr1)(a)
z = (Idr2⊗DFT𝜔1)(y).

Step (5) consists of r scalar multiplications by so-called twiddle factors 𝜔k1i2. We will
denote this twiddling map by Ωr1,r2,𝜔:

y = Ωr1,r2,𝜔(x).

The last step corresponds to the transposition of an r2×r1 matrix. Denoting this transpo-
sition map by Πr2,r1, the relation (3) becomes

Πr1,r2∘DFT𝜔 = (Idr2⊗DFT𝜔1)∘Ωr1,r2,𝜔∘(DFT𝜔2⊗Idr1). (8)

2.3. DFTs using the Chinese remainder theorem
If gcd(r1, r2)=1 in the previous subsection, then it is actually possible to avoid the twid-
dling step (5), as first noted by Good in [11]. Consider the Bezout relation

u1 r1+u2 r2 = 1,

where |u1|< r2 and |u2|< r1. Then we have the isomorphism of abelian groups

ℤ/rℤ ⟶ ℤ/r1ℤ×ℤ/r2ℤ
imod r ⟼ (u2 imod r1,u1 imod r2)

(r2 i1+ r1 i2)mod r ⟻ (i1mod r1, i2mod r2)

This Chinese remainder isomorphism induces an isomorphism of 𝕂-algebras

𝕂[x]/(xr−1) →→→→→→→→→
𝜉

𝕂[x1]/(x1r1−1)⊗𝕂[x2]/(x2r2−1)
xi ⟼ x1u2ix2

u1i

xr2i1+r1i2 ⟻ x1
i1x2i2.

Representing cyclic polynomials A=∑i aix
i∈𝕂[x]/(xr−1) and

B = �
0⩽i1<r1,0⩽i2<r2

bi1r2+i2x1
i1x2i2 ∈ 𝕂[x1]/(x1r1−1)⊗𝕂[x2]/(x2r2−1)

by the vectors a,b∈𝕂r of their coefficients, the map 𝜉 acts as a permutation Ξ:𝕂r→𝕂r: if
B=𝜉(A) then bi1r2+i2=a(r2i1+r1i2)remr, for 0⩽ i1< r1 and 0⩽ i2< r2. The bivariate DFT

DFT𝜔1,𝜔2 ≔ DFT𝜔1⊗DFT𝜔2 ≔ (Idr1⊗DFT𝜔2)∘(DFT𝜔1⊗Idr2)

sends B=∑i1,i2 bi1r2+i2x1
i1x2i2 to the vector b̂ with b̂i1r2+i2=B(𝜔1

i1,𝜔2
i2). If B=𝜉(A) and â=

DFT𝜔(A), then
B(𝜔1

i1,𝜔2
i2) = B(𝜔i1r2,𝜔i2r1) = A(𝜔i1r2u2+i2r1u1),
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so b̂i1r2+i2= â(i1r2u2+i2r1u1)remr and b̂=Π(â) for some permutation Π:𝕂r→𝕂r. Altogether,
this yields

Π∘DFT𝜔 = DFT𝜔1,𝜔2∘Ξ.

2.4. DFTs up to permutations
The above two subsections show that efficient algorithms for DFTs often only compute
them up to permutations. For some applications, it is actually not required to perform all
these permutations. Assume for instance that we have an efficient algorithm for the com-
putation of the “twisted” DFT� 𝜔=Π∘DFT𝜔 for some permutationΠ. Then the variant

PQ = DFT� 𝜔
−1(DFT� 𝜔(P)DFT� 𝜔(Q))

of (2) still yields an efficient method for FFT-multiplication. This technique requires the
inverse transform DFT� 𝜔

−1 to be implemented with more care, since one cannot directly
use the formula (1). Instead, one typically uses a similar algorithm as forDFT𝜔, but with
all steps reversed.

The twisting technique can be combined recursively with the algorithms from the
previous two subsections. Assume for instance that DFT� 𝜔1≔Π1 ∘DFT𝜔1 and DFT� 𝜔2≔
Π2∘DFT𝜔2 for some permutations Π1:𝕂r1→𝕂r1 and Π2:𝕂r2→𝕂r2, and let

DFT� 𝜔 ≔ (Π1⊗Π2)∘Πr1,r2∘DFT𝜔,

with the notation of (8). Then, equation (8) implies that

DFT� 𝜔 = (Idr2⊗Π1)∘(Π2⊗Idr1)∘(Idr2⊗DFT𝜔1)∘Ωr1,r2,𝜔∘(DFT𝜔2⊗Idr1)
= (Idr2⊗Π1)∘(Idr2⊗DFT𝜔1)∘(Π2⊗Idr1)∘Ωr1,r2,𝜔∘(DFT𝜔2⊗Idr1)
= (Idr2⊗Π1)∘(Idr2⊗DFT𝜔1)∘Ω̃r1,r2,𝜔∘(Π2⊗Idr1)∘(DFT𝜔2⊗Idr1)
= (Idr2⊗DFT� 𝜔1)∘Ω̃r1,r2,𝜔∘(DFT� 𝜔2⊗Idr1)

where Ω̃r1,r2,𝜔≔(Π2⊗Idr1)∘Ωr1,r2,𝜔∘(Π2
−1⊗Idr1). For some table (𝜔e0, . . . ,𝜔er−1) of pre-

computable twiddling factors, we have yi=𝜔eixi for any x,y∈𝕂r with y=Ω̃r1,r2,𝜔(x).
For DFTs of small orders, we also note that permutations of the input and output

coefficients can be achieved without cost. As will be explained in sections 4.1 and 4.2, we
will regard suchDFTs as completely unrolled straight-line programs (SLPs); see definition
in [3] for instance. Instead of explicitly permuting the input and output coefficients, it
then suffices to appropriately rename all local variables in the SLP. This is particularly
useful for the algorithm from section 2.3, which requires permutations of both the input
and output coefficients.

2.5. Number theoretic transforms
In the special case when𝕂 is a finite field 𝔽p for some prime number p, a discrete Fourier
transform is also called a number theoretic transform (NTT). The most favorable case is
when p is of the form p=s2ℓ+1 or p=s2ℓ3ℓ′+1, where s is small. Indeed, since the multi-
plicative group of𝔽p is cyclic of order p−1, this ensures the existence of primitive roots of
unity𝜔 of large orders of the form 2ℓ or 2ℓ3ℓ′. Nice primes p like this are sometimes called
FFT primes. In what follows, for any order r | (p−1), we will denote by NTTr a number
theoretic transform of the formΠ∘DFT𝜔 for some suitable permutationΠ and primitive
r-th root of unity 𝜔.
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Pollard first noted [21] that NTTs can be used to devise efficient practical algorithms
for multiplying large integers: using Kronecker segmentation, the two multiplicands
a,b∈ℕ can be rewritten as special values

a = a0+a12k+ ⋅ ⋅ ⋅ +am2km

b = b0+b12k+ ⋅ ⋅ ⋅ +bn2kn

of integer polynomials A,B∈ℕ[x]with small coefficients ai,bj∈{0, . . . , 2c−1}. Then ab=
(AB)(2k) and the product AB has coefficients in {0, . . . , (max (m,n)+1)22c−1}. If

(max (m,n)+1)22c < 2k, (9)

then AB can be read off from its reduction modulo p. If we also have m+n< r, then the
product AB modulo p can be computed fast using FFT-multiplication.

For the application to integer multiplication, Pollard's technique is most efficient
when p nicely fits into a machine integer or floating point number. As soon asmax(m,n)
gets large (say max (m, n) > 220), this constraints c to become fairly small (e.g. c<15
when using double precision floating point arithmetic with k=50). In order to increase c,
and reduce the negative impact of max (m, n) in the constraint (9), Pollard suggested
to reduce modulo three FFT-primes p1, p2, and p3 instead of a single one and use Chi-
nese remaindering to work modulo p1p2p3 instead of p. For instance, when using double
precision floating point arithmetic, this allows us to take k=150 and c<65 instead of
k=50 and c<15. As of today, this is one of the fastest practical methods for integer
multiplication [13].

3. MODULAR FLOATING POINT ARITHMETIC

We refer to [7, 19] for previous work on the implementation of SIMD versions of mod-
ular arithmetic. Before starting such an implementation, one first has to decide whether
one wishes to rely on floating point or integer arithmetic. In principle, integer arithmetic
should be most suitable, since no bits are wasted on the storage of exponents. However,
for large moduli of more than 32 bits, floating point arithmetic tends to be supported
better by current hardware.

First of all, at least in the case of INTEL processors, throughputs and latencies for basic
floating point instructions are better than for their integer counterparts. Secondly, the
AVX2 and AVX-512 instruction sets only provide SIMD support for 32×32 bit integer
products; although there is an SIMD instruction for 64×64 bit integer multiplication, the
high part of the 128 bit result is lost. In comparison, with floating point arithmetic, the
full product of a 53×53 bit integer multiplication can be obtained using two fused mul-
tiply add instructions.

Based on these hardware considerations, we have decided to implement our NTT
with floating point arithmetic. Our implementation focusses on odd moduli m⩾3 that
fit into double precision numbers and works for SIMD widths up to 8, as allowed by
processors with AVX-512 support.
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Our approach further extends known ideas. On the one hand, for the normalized
representation of integersmodulom, we use signed residues in {−⌊ /m 2⌋,...,⌊ /m 2⌋}; this pro-
vides uswith a cheapway to gain one bit of precision and it also simplifies themathemat-
ical analysis. On the other hand, we will allow the results of certain intermediate compu-
tations to be non-normalized. The latter idea was already used with success in [13],
but we push it further by taking the modulus a bit smaller (thereby sacrificing a few bits
of precision), which allows us to redundantly represent modular integers amodm by
integers a that can be several times larger thanm (this allows for several speed-ups, as we
shall see). Several recent implementations [2, 24] also use this kind of super-redundant
representations in order to perform basic NTTs of order 4 and 8 without unnecessary
reductions. In this paper we will present a generalization to arbitrary orders.

3.1. Pseudo-code

In what follows, we will write 𝜇 for the machine precision and assume that 𝜇⩾8. Then
any real number in the interval [1, 2) is a floating point number if and only if it is a
multiple of 21−𝜇. Floating point number can be scaled by powers 2e with exponents e∈
[−E+2,E− 1]. Here E∈ℕ is assumed to satisfy E− 2 ⩾2𝜇. Finally, zero is a special
floating point number.

When rounding to nearest, the rounding error of a floating point operation with an
exact result in [1, 2) is always bounded by 2−𝜇. Given a general operation with an exact
result x∈[1, 2) and rounded result x̃, this means that |x̃− x| ⩽ 2−𝜇. Note also that x̃⩾1
necessarily holds in this case. Consequently, we have

|x̃−x| ⩽ |x| 2−𝜇 and |x̃−x| ⩽ |x̃| 2−𝜇. (10)

More generally, these two inequalities hold whenever the exponent of x does not over-
flow or underflow. Our current implementation is limited to double precision, for which
𝜇=53 and E=1024, but it could easily be extended to single and other precisions. We
assume correct IEEE 754 style rounding to the nearest [1].

We will present our implementation of modular arithmetic using pseudo machine
code. The only data type that wewill use are SIMD vectors of widthwwith floating point
entries (e.g.w=8 for processors with AVX-512 support, for double precision). Such vec-
tors are typically stored in hardware registers. The first argument of all our algorithms
will be the destination register and the subsequent arguments the source registers. For
instance, the instruction add(a, b, c) adds two SIMD vectors b and c and puts the result
in a. In the pseudo-code, the modulus m stands for a SIMD vector of w potentially dif-
ferent moduli. We also denote by u its floating point inverse /1 m, rounded to nearest.

We assume that basic instructions for SIMD floating point arithmetic are provided
by the hardware, namely addition (add), subtraction (sub), multiplication (mul), fused
multiply add (fma) and its variants (fms, fnma, fnms), as well as an instruction for
rounding to the nearest integer (round). Precisely, the fused operators are defined as
follows:

fma(d,a,b, c) means d ≔ ab+ c fnma(d,a,b, c) means d ≔ −ab+ c
fms(d,a,b, c) means d ≔ ab− c fnms(d,a,b, c) means d ≔ −ab− c

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7



On processors with AVX-512 support, one may implement round using the intrinsic
_mm512_roundscale_pd.

The modular analogues for the basic arithmetic operations are suffixed by _mod. For
instance, mul_mod(d,a,b) computesw productsmodulom. The results of these analogues
are not required to be normalized. The modular ring operations, as well as a separate
operation normalize for normalization, can be implemented as follows:

Algorithm add_mod(d,a,b)

add(d,a,b)

Algorithm sub_mod(d,a,b)

sub(d,a,b)

Algorithm normalize(d,a)

mul(x,a,u)
round(q,x)
fnma(d,q,m,a)

Algorithm mul_mod(d,a,b)

mul(x,a,b)
mul(q,x,u)
round(q,q)
fms(y,a,b,x)
fnma(z,q,m,x)
add(d,z,y)

Here x, y, z are temporary variables. Modular analogues of the fused operations fma,
fms, fnma, and fnms turn out to be of limited use, since non-normalized addition and
subtraction take only one operation.

3.2. Measuring how far we are off from normalization

For the analysis of our algorithms, it suffices to consider the scalar case w=1. Consider
a modular integer amodm represented by an integer a∈ℤ that fits into a floating point
number of precision 𝜇. Let

𝜈a ≔ 2|a|
m

and note that 𝜈a<1 if and only if |a|⩽ ⌊m/2⌋, i.e. if and only if a is normalized. If 𝜈a⩾1,
then we regard 𝜈a as a measure for how non-normalized a really is. For each of our algo-
rithms add_mod, sub_mod, mul_mod, and normalize it is interesting to analyze 𝜈d as
a function of 𝜈a and 𝜈b.

Note that 2𝜇+ 1 is the smallest integer that cannot be represented exactly using
a floating point number. For this reason, we always assume that the source arguments a
and b of our algorithms as well as the modulus m satisfy |a| ⩽ 2𝜇, |b| ⩽ 2𝜇, and m⩽2𝜇.
Each of our algorithms is easily seen to be correct, provided that |d| ⩽ 2𝜇. In what fol-
lows, we will in particular study under which circumstances this can be guaranteed.

In the cases of addition and subtraction, the analysis is simple, since we clearly have
𝜈d⩽𝜈a+𝜈b and |d|⩽2𝜇, provided that |a|+ |b|⩽2𝜇 (or 𝜈a+𝜈b⩽2𝜇+1/m, equivalently).

PROPOSITION 1. The algorithm normalize satisfies:

a) If |a|<2𝜇−2, then vd<1.

b) If 2𝜇−2⩽|a|⩽2𝜇, then vd⩽1+ /5 m.
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Proof. Let 𝜖 and 𝛿 be the errors for the computations of u and x:

m−1 = u+𝜖
x = au+𝛿

and recall that |𝜖|⩽u2−𝜇, |𝛿|⩽ |x| 2−𝜇, |𝜖|⩽m−12−𝜇, and |𝛿|⩽ |a|u2−𝜇, using (10). Hence,

|x−am−1| ⩽ |au−am−1|+ |𝛿| ⩽ |a| |𝜖|+ |𝛿| ⩽ |a|u21−𝜇.

Let 𝜂 be the distance between am−1 and the set ℤ+ /1 2. Since m is odd, we must have
𝜂⩾(2m)−1. If |x−am−1|<𝜂, then we necessarily have q=⌊x⌉=⌊am−1⌉, and the end-result
d will indeed be normalized. Here ⌊x⌉ stands for the nearest integer to x. The condition
|x− am−1| <𝜂 is satisfied as soon as |a|u21−𝜇<(2m)−1, i.e. if |a| (1+2−𝜇)<2𝜇−2. Since a
is an integer and there are no integers between 2𝜇−2/(1+2−𝜇) and 2𝜇−2, this condition
further simplifies into |a|<2𝜇−2. This proves (a).

If 2𝜇−2⩽|a|⩽2𝜇, then the above calculations still yield |x−am−1|⩽2u, whence

|q−am−1| ⩽ |q−x|+ |x−am−1| ⩽ /1 2+2u

and

|d| = |mq−a| ⩽ /m 2+2um ⩽ /m 2+2(1+m |𝜖|) ⩽ /m 2+2(1+2−𝜇).

This in particular implies (b). □

Remark 2. If 2𝜇−2⩽ |a| ⩽ 2𝜇 and m<2𝜇−1− 5, then |d| = vdm/2 ⩽ (m+ 5)/2< 2𝜇−2, so
a second application of normalizewill achieve to normalize a.

PROPOSITION 3. Let

C ≔ (1+22−𝜇)m2−𝜇 ≈ m2−𝜇

B ≔ 1− (m+9)2−1−𝜇 ≈ 1− 1
2 m2−𝜇

𝛾 ≔
1+ 1−m(1+22−𝜇)22−𝜇�

4(1+22−𝜇)
≈ 1

2 −
1
2 m2−𝜇− 1

2 (m2−𝜇)2− ⋅ ⋅ ⋅.

Then the algorithm mul_mod satisfies:

a) We have 𝜈d⩽1+C𝜈a𝜈b.

b) If |ab|⩽ 1
2 B2

2𝜇, then |d|⩽2𝜇.

c) If m⩽2𝜇−2, |a|⩽𝛾 2𝜇, and |b|⩽𝛾 2𝜇, then |d|⩽𝛾 2𝜇.

Proof. We first note that the product a b is represented exactly by a b= x+ y, where
|y| ⩽ |x| 2−𝜇 and |y| ⩽ |a b| 2−𝜇. By a similar reasoning as in the beginning of the proof of
Proposition 1, we have

|q−xm−1| ⩽ /1 2+|x|u21−𝜇,

whence

|z| ⩽ /m 2+|x| (1+2−𝜇)21−𝜇.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9



Note that 𝜇⩾8 implies |z|<2𝜇 so z is the exact value. We deduce that

|d| ⩽ |z|+ |y|
⩽ /m 2+|x| (1+21−𝜇)21−𝜇+|ab| 2−𝜇

⩽ /m 2+|ab| (1+2−𝜇)(1+21−𝜇)21−𝜇+|ab| 2−𝜇

⩽ /m 2+|ab| (1+22−𝜇)21−𝜇.

This relation in particular yields (a). If |ab|⩽ 1
2 B2

2𝜇, then we also obtain

/m 2+|ab| (1+22−𝜇)21−𝜇 ⩽ /m 2+(1+22−𝜇)B2𝜇

⩽ /m 2+(1+22−𝜇)(1− (m+9)2−1−𝜇)2𝜇

⩽ /m 2+(1−m2−1−𝜇)2𝜇

= 2𝜇,

which proves (b). Assume finally that |a|⩽𝛾 2𝜇 and |b|⩽𝛾 2𝜇. Then

|d| ⩽ /m 2+2𝛾 2(1+22−𝜇)2𝜇.

Since m⩽2𝜇−2 is odd, we have m⩽2𝜇−2−1<2𝜇−2/(1+22−𝜇), whence the equation

2 t2(1+22−𝜇)2𝜇− t2𝜇+ /m 2 = 0

has two positive roots

t1,2 =
1± 1−m(1+22−𝜇)22−𝜇�

4(1+22−𝜇)
.

We took 𝛾 to be the largest of these two roots. This implies (c). □

Remark 4. If |a| ⩽2𝜇−2, |b| ⩽ 2𝜇−2, and m<2𝜇−2, then (c) implies |d| ⩽2𝜇−2. Indeed, m⩽
2𝜇−2−1 in that case, whence 𝛾⩾ /1 4.

Remark 5. Multiplication has the benefit of producing partially normalized results, espe-
cially if one of the arguments is already normalized. For instance, if 𝜈a⩽1 and |b| ⩽ 2𝜇,
then (a) yields

𝜈d ⩽ 1+C𝜈b ⩽ 1+C2𝜇+1/m ⩽ 3+23−𝜇.

If m<2𝜇−4, 𝜈a⩽1, and 𝜈b⩽4, then (a) yields

𝜈d ⩽ 1+C𝜈a𝜈b ⩽ 1+4(1+22−𝜇)(2𝜇−4−1)2−𝜇 ⩽ 1+ /1 4,

since 𝜇⩾8.

4. CODELETS FOR NUMBER THEORETIC TRANSFORMS

The easiest way to implement DFTs is to write a single routine that takes the order r
and the coefficients as input and then applies, say, Cooley and Tukey's algorithm
using a double loop. However, this strategy is register-inefficient for small orders and
cache-inefficient for large orders. Suboptimal loop unrolling may be another problem.
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For our implementation, we use the alternative strategy based on “codelets”. For a
given finite field 𝔽p and a given target order r, the idea is to automatically generate a
highly optimized program NTTr for number theoretic transforms of order r over 𝔽p (up
to permutations as explained in section 2.4). Such highly optimized programs that are
dedicated to one specific task are called codelets. We refer to [8, 9, 22] for early work on
codelets in the more traditional context of DFTs overℂ.

For small orders, codelets are typically designed by hand. For large orders, they are
generated automatically in terms of codelets of smaller lengths. We developed a small
“codelet library” inside MATHEMAGIX for the automatic generation of codelets for NTTs
of different orders as well as other linearmaps. One differencewith previouswork is that
all code is written in the MATHEMAGIX language and that codelets can be both generated
and executed at runtime.

There are often multiple solutions to a given task. For instance, for an NTT of com-
posite order r, there may be multiple ways to factor r= r1 r2 and then apply one of the
algorithms from section 2.2 or 2.3. One advantage of codelets is that we may generate
codelets for each solution, do some benchmarking at runtime, and then select the most
efficient solution. For large orders, when benchmarking becomes more expensive, the
most efficient tactics can be cached on disk. Our codelet library exploits this kind of ideas.

4.1. Straight-line programs over modular integers

A straight-line program (SLP) over ℤ/mℤ is a map f : (ℤ/mℤ)k→(ℤ/mℤ)ℓ that can be
implemented using a sequence of ring operations in ℤ/mℤ. For instance, if i∈ℤ/mℤ
is a primitive root of unity of order 4, then the following SLP with input s=(s0, s1, s2, s3)
and output d=(d0,d1,d2,d3) computes an NTT of order 4:

x0≔ s0+ s2
x1≔ s1+ s3
x2≔ s0− s2
x3≔ s1− s3
x3≔i×x3
d0≔x0+x1
d1≔x0−x1
d2≔x2+x3
d3≔x2−x3

Here x0, x1, x2, x3 are auxiliary variables. Note also that the output has been re-indexed
in bit-reversed order: if ŝ=DFTi(s), then d0= ŝ0, d1= ŝ2, d2= ŝ1, and d3= ŝ3.

For an actual machine implementation of such an SLP, we may replace the ring oper-
ations by the algorithms add_mod, sum_mod, and mul_mod from the previous section.
However, we have to be careful that all non-normalized intermediate results fit into 𝜇 bit
integers. An easy linear-time greedy algorithm to ensure this is to insert normalize
instructions whenever some intermediate result might not fit.

More precisely, for every intermediate result z of a binary operation on a and b, we
use the results from section 3.2 to compute a bound for 𝜈z. Whenever this bound exceeds
2𝜇+1/m, we insert an instruction to normalize a or b (we pick a if 𝜈a⩾𝜈b and b otherwise).
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For instance, if 2𝜇+1/m is slightly larger than 3 /1 2, then applying this strategy to the above
SLP yields

add_mod(x0, s0, s2) 𝜈x0⩽2
add_mod(x1, s1, s3) 𝜈x1⩽2
sub_mod(x2, s0, s2) 𝜈x2⩽2
sub_mod(x3, s1, s3) 𝜈x3⩽2
mul_mod(x3, i,x3) 𝜈x3⩽2 /1 7 (using part (a) of Proposition 3)
normalize(x0,x0) 𝜈x0⩽1+ (using Proposition 1)
add_mod(d0,x0,x1) 𝜈x0⩽3+
sub_mod(d1,x0,x1) 𝜈x2⩽3+
normalize(x3,x3) 𝜈x3⩽1+ (using Proposition 1)
add_mod(d2,x2,x3) 𝜈x2⩽3+
sub_mod(d3,x2,x3) 𝜈x3⩽3+

Here we implicitly assumed that the input arguments s0, s1, s2, s3 are normalized. We
also wrote 1+ for a number that is slightly larger than 1 (e.g. 1 + 25−𝜇 will do). We
indeed had to normalize x0 or x1 before the instruction add_mod(d0,x0,x1), since other-
wise 𝜈x0+𝜈x1=4would exceed 3 /1 2. Similarly, we normalized x3, since 2+2 /1 7=4 /1 7>3 /1 2.
On the other hand, after these normalizations, we did not need to normalize x1 and x2,
since 2+1+ ≔3+<3 /1 2.

A few remarks about this approach.

• The greedy strategy is not optimal in the sense that we might have prevented over-
flows by inserting an even smaller number of normalization instructions. One obvious
optimization is to do the normalization of x0 right after its computation, which may
improve subsequent bounds and avoid other normalizations. One may iterate the
greedy algorithm a few times after applying this optimization. It is an interesting
question how to design even better algorithms.

• We may choose to normalize the output d0,d1,d2,d3 or not. If we allow for non-nor-
malized output, then it may be interesting to also allow for non-normalized input.
The greedy algorithm generalizes to this case as long as we know bounds for 𝜈s0, 𝜈s1,
𝜈s2, 𝜈s3.

• The bound for 𝜈x3 after multiplication with i is suboptimal: since i is a constant, 𝜈i is
also a known constant in (0,1). We may use this constant instead of the rough bound
𝜈i⩽1. For instance, if 𝜈i⩽ /1 4, then 𝜈x3⩽1 /2 7 after the multiplication of x3 with i. Con-
sequently, 𝜈x2+𝜈x3=3 /2 7<3 /1 2, which makes it no longer necessary to normalize x3.

4.2. Number theoretic transforms of small orders

For NTTs of order up to 64, it is efficient to use unrolled codelets that can be regarded
as SLPs. Throughout our implementation, we assumed that 2𝜇/m⩾31+. This allows
for moduli m>248 with a “capacity” of 48 bits. We wrote our transforms by hand and
manually determined the best spots for normalizations. Although this means that we
did apply the general greedy algorithm from the previous section, we did use the same
strategy to determine bounds for the 𝜈z, where z ranges over the intermediate results,
and verify that we always have 𝜈z⩽31.
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For small power of two orders r∈{2,4,8}, we use the classical Cooley–Tukey algorithm
without any normalization. Writing s and d for the input and output vectors in (ℤ/mℤ)r,
and setting 𝜈s≔max(𝜈s0, . . . , 𝜈sr−1), Proposition 3 implies 𝜈d⩽ r𝜈s. In view of Remark 5,
the worst case 𝜈d= r𝜈s may only occur for evaluations at 1 and −1 (which only involve
additions and subtractions).

NTTs ofmedium-size power of two orders r∈{16,32,64} are decomposed into smaller
NTTs with one intermediate twiddling stage: writingNTTr for a number theoretic trans-
form of order r (while assuming the usual bit-reverse indexing), we apply the formulas

NTT16 = (Id4⊗NTT4)∘Twiddle4,4∘(NTT4⊗Id4)
NTT32 = (Id4⊗NTT8)∘Twiddle4,8∘(NTT4⊗Id8)
NTT64 = (Id8⊗NTT8)∘Twiddle8,8∘(NTT8⊗Id8),

for suitable diagonal linear twiddle maps Twiddler1,r2. Our implementation automati-
cally generates completely unrolled codelets forNTT16,NTT32, andNTT64. The twiddling
step has the advantage of partially normalizing the intermediate results (see Remark 5).
For instance, if x= (NTT8⊗ Id8)(s), y=Twiddle8,8(x), d= (Id8⊗NTT8)(y), and 𝜈s⩽3,
then 𝜈x⩽24, 𝜈y⩽1 /24 31⩽1 /7 8, and 𝜈d⩽15, using part (a) of Proposition 3. Furthermore,
the fact that several twiddle factors are equal to one allows for an optimization: when-
ever we need tomultiply cwith one, we simply normalize c instead. In the case ofNTT16,
the error bounds are a bit better, and we only need to perform two normalizations.

We also implemented hand-coded NTTs for some mixed-radix orders of the
form r=2i 3 j. If r=3, and assuming that 𝜔 is a primitive third root of unity, we use
the following algorithm, without normalization:

d1≔ s1− s2
d0≔𝜔×d1
d2≔ s0− s1
d2≔d2−d0
d1≔ s0− s2
d1≔d1+d0
d0≔ s0+ s1
d0≔d0+ s2

One verifies that 𝜈d0⩽3𝜈s and 𝜈d1⩽3(1+ /2 93)𝜈s. For r∈{6,12}, we use Good's algorithm
to decomposeNTTr in terms of NTT3 andNTTr/3. This yields 𝜈d⩽ r(1+ /2 93)𝜈s. For r=9,
we use the formula

NTT9 = (Id3⊗NTT3)∘Twiddle3,3∘(NTT3⊗Id3)

without normalization, which yields 𝜈d⩽9 (1+ /2 93) 𝜈s. For r∈{18, 24}, we use Good's
algorithm with an intermediate normalization step. For r=48, we use the formula

NTT48 = (Id6⊗NTT8)∘Twiddle6,8∘(NTT6⊗Id8),

while taking benefit of the partial normalization of the twiddling step.
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4.3. Large orders

Now assume that we wish to compute an NTT of large order r∈2ℕ3ℕ with r>64. For
input and output vectors s,d∈(ℤ/rℤ)r, we require that 𝜈d⩽24 whenever 𝜈s⩽2. This is
indeed the case for all codelets from the previous subsection.

Let r= r1 r2 be a decomposition of r with 1< r1, r2< r. We recursively assume that
we know how to compute codelets for NTTr1 and NTTr2. Now we compute NTTr using
the formula

NTTr = (Idr1⊗NTTr2)∘Twiddler1,r2∘(NTTr1⊗Idr2). (11)

Following (4), we compute x=(NTTr1⊗Idr2)(s) using

(xj,xr2+ j, . . . ,xr−r2+ j) ≔ NTTr1(sj, sr2+ j, . . . , sr−r2+ j) (12)

for j= 0, . . . , r2− 1. Note that this yields 𝜈x⩽24 whenever 𝜈s⩽2, by our assumption
onNTTr1. Setting y≔Twiddler1,r2(x), let 𝜔i, j be the twiddle factors with

yir2+ j = 𝜔i, jxir2+ j,

for i=0, . . . , r1−1 and j=0, . . . , r2−1. For i=0, . . . , r1−1, we next compute

(dir2,dir2+1, . . . ,dir2+r2−1) ≔ NTTr2(𝜔i,0xir2,𝜔i,1xir2+1, . . . ,𝜔i,r2−1xir2+r2−1), (13)

which corresponds to combining (5) and (6). If 𝜈x⩽24, then 𝜈y⩽1 /30 31⩽2 and 𝜈d⩽24,
by our assumption on NTTr2. This proves our inductive requirement that 𝜈d⩽24 when-
ever 𝜈s⩽2.

It is important to keep an eye on the cache efficiency for the actual implementa-
tion. In the formula (12), we precompute the twiddle factors and store the vectors
(dir2, . . . , dir2+r2−1), (xir2, . . . , xir2+r2−1), and (𝜔i,0, . . . , 𝜔i,r2−1) in contiguous segments of
memory. Instead of applying a global twiddling step Twiddler1,r2, we use a loop over i
and mix the twiddling step with the NTTs of length r2; this avoids traversing r elements
in memory twice and thereby improves the cache efficiency. If r2 is really large, then
we might rewrite NTTr2 in terms of smaller NTTs and move the twiddling step even
further inside.

As to (12), we first need to move the input slices (sj, sr2+ j, . . . , sr−r2+ j) with “stride” r2
into contiguous memory. After applying the NTT, we also need to put the result back in
the slice (xj,xr2+ j, . . . ,xr−r2+ j) with stride r2. These memory rearrangements correspond
to two r1×r2 and r2× r1 matrix transpositions. For cache efficiency, we need to minimize
the number of full traversals of vectors of size r, so it is again better to use a loop over j.
However, entries of the form s2ℓk, . . . , s2ℓk+2ℓ−1 are typically stored in the same cache line
for some ℓ∈ℕ that depends on the hardware. It is better to treat these contiguous entries
together, which can be achieved by cutting the loop over j into chunks of size 2ℓ (in fact,
slightly different chunk sizes may perform even better). This corresponds to rewriting
the r1×r2matrix transposition into r2/2ℓ transpositions of r1×2ℓ matrices (and similar for
the inverse transposition).
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4.4. SIMD acceleration
Assume now that we are on hardware that supports SIMD vectors of width w and let us
investigate how to vectorize the algorithm (11) from the previous subsection.

Let us first consider the case when w2 | r and r2≔w. The first step (12) is easy to vec-
torize: we may reinterpret the mapNTTr1⊗Idr2 on vectors of size rwith entries inℤ/mℤ
as the map NTTr1⊗Idr2/w on vectors of size r/w with SIMD entries in (ℤ/mℤ)w. As to
the second step (13), we have Idr1⊗NTTw=Idr1/w⊗Idw⊗NTTw and the computation
of the map Idw⊗NTTw reduces to the computation of NTTw⊗Idw, using a w×w matrix
transposition. In order to compute the map (Idr1⊗NTTw) ∘Twiddler1,w, this leads us to
use a loop of length r1/w that treats blocks of w2 coefficients at the time. On each block,
we first multiply with the twiddle factors, then apply a w×w matrix transposition, and
finally an inline codelet forNTTw for SIMD coefficients of width w.

The idea behind SIMD implementations ofw×wmatrix transposition is to recursively
reduce this operation to two (w/2)×(w/2) transpositions in different lanes, followed by
a linear number of operations to combine the results. This leads to an algorithm that does
the full transposition in O(w log2w) steps. Concrete implementations on existing hard-
ware are a bit tricky: every next generation or brand of SIMD processors (SSE, AVX2,
AVX-512, Neon, . . .) tends to provide another set of instructions that are useful for this
application (permute, blend, shuffle, etc.). Instead of covering all cases, we illustrate
the above recursive meta-algorithm by showing how to perform a 4×4 matrix transpo-
sition using 8 SIMD instructions on machines with AVX2 support:

x[0] = _mm256_permute2f128_pd (s[0], s[2], 32)
x[2] = _mm256_permute2f128_pd (s[0], s[2], 49)
x[1] = _mm256_permute2f128_pd (s[1], s[3], 32)
x[3] = _mm256_permute2f128_pd (s[1], s[3], 49)
d[0] = _mm256_shuffle_pd (x[0], x[1], 0)
d[1] = _mm256_shuffle_pd (x[0], x[1], 15)
d[2] = _mm256_shuffle_pd (x[2], x[3], 0)
d[3] = _mm256_shuffle_pd (x[2], x[3], 15)

Let us now turn to the case when w3 |r. For any decomposition r= r1r2 with w |r1 and
w2 | r2, we may apply the above vectorization technique for the computation of DFTr2.
Using the loop (13), this also allows us to vectorize (Idr1⊗NTTr2) ∘Twiddler1,r2. Com-
bined with the fact that the map NTTr1⊗Idr2 trivially vectorizes, this provides us with
an alternative vectorization of the formula (11). This technique has the advantage of
providing more flexibility for the choices of r1 and r2. In particular, for large orders r,
taking r1≈ r2≈ r√ tends to ensure a better cache efficiency.

For our actual implementation, we emulate an SIMDwidthw′≔2w of twice the hard-
ware SIMD width w for the given floating point type. This means that every instruction
is “duplexed” for the “low” and “high” parts. For instance, the codelet for NTT3 from
section 4.2 gives rise to the following duplex version for coefficients in (ℤ/mℤ)2:

d2≔ s2− s4
d3≔ s3− s5
d0≔𝜔×d2
d1≔𝜔×d3
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name CPU SIMD cores frequency memory
i7 Intel Core i7 4×64 4 physical, 8 logical 2.8 GHz 16 Gb 1.6 GHz DDR3

xeon Intel Xeon W 8×64 8 physical, 16 logical 3.2 GHz 32 Gb 2.67 GHz DDR4
zen4 AMD 7950X3D 8×64 16 physical, 32 logical 5.759 GHz 128 Gb, 5.2GHz DDR5
m1 Apple M1 2×64 4 performance, 4 efficiency 3.2 GHz 16 Gb
m3 Apple M3 Pro 2×64 6 performance, 6 efficiency 4.05 GHz 36 Gb

Table 1. Overview of the five machines on which we benchmarked our implementation.

d4≔ s0− s2
d5≔ s1− s3
d4≔d4−d0
d5≔d5−d1
⋅⋅⋅

The main advantage of this technique is that it spreads data dependencies. This makes
the code less vulnerable to delays caused by instructions with high latencies. One disad-
vantage of duplexing is that it doubles the pressure on hardware registers. Nevertheless,
this is less of a problem on modern processors with many SIMD registers.

5. TIMINGS

We implemented the algorithms described in this paper in theMATHEMAGIX language. In
order to test the new algorithms, one has to add --enable-mmcomp to the configuration
options, before compiling MATHEMAGIX. Here mmcomp stands for the new experimental
MATHEMAGIX compiler. The code for the number theoretic transforms can be found in
the mmx/hpc subdirectory of the mmlib package (revision 11190 available at https://
sourcesup.renater.fr/projects/mmx/). The binary that we used to obtain the tim-
ings in Table 2 was compiled using the following command:

mmcomp --optimize hpc/bench/dft_best_mixed_bench.mmx

We systematically use the fixed prime number p=1439 ⋅228 ⋅ 36+1=281597114843137 as
our modulus for all NTTs. Consequently, 𝔽p has power of two roots of unity of orders
up till r=228, which is also an upper bound for our main benchmarks. For orders r⩽225,
our implementation does an extensive search for the best strategy. For larger orders, we
make a suboptimal guess based on the best observed strategies for orders ⩽225.

We tested our implementation on five different systems whose characteristics are
specified in Table 1. These systems cover three SIMD widths:
• 128 bits, using ARM Neon on the Apple M1 and M3 based machines;
• 256 bits, on an old laptop whose Intel Core i7 4980HQ CPU supports AVX-2;
• 512 bits, on two machines with AVX-512 support: Intel Xeon W-2140B and AMD

RYZEN9 7950X3D.
Note that the AVX-512 support on the AMD RYZEN9 7950X3D processor is “double
pumped” in the sense that certain instructions (like FMA) are done in two parts of 256
bits each.
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r i7 xeon zen4 m1 m3 r i7 xeon zen4 m1 m3
64 0.10μs 51.4ns 16.5ns 0.11μs 73.4ns 884736 5.52ms 3.10ms 1.53ms 4.51ms 3.25ms
128 0.25μs 0.11μs 56.9ns 0.25μs 0.17μs 995328 6.17ms 3.55ms 1.79ms 5.01ms 3.59ms
192 0.43μs 0.17μs 94.3ns 0.40μs 0.26μs 1048576 7.15ms 4.13ms 1.92ms 5.77ms 4.15ms
256 0.56μs 0.26μs 0.15μs 0.57μs 0.38μs 1179648 7.84ms 4.30ms 2.09ms 6.26ms 4.46ms
384 0.89μs 0.40μs 0.27μs 0.85μs 0.57μs 1327104 8.68ms 4.74ms 2.44ms 6.83ms 4.86ms
512 1.24μs 0.56μs 0.34μs 1.23μs 0.80μs 1492992 9.96ms 5.57ms 2.73ms 7.96ms 5.71ms
576 1.30μs 0.60μs 0.40μs 1.33μs 0.87μs 1572864 10.8ms 6.02ms 3.04ms 8.85ms 6.30ms
768 1.93μs 0.85μs 0.54μs 1.87μs 1.25μs 1769472 11.7ms 6.74ms 3.36ms 9.59ms 6.81ms
1024 2.57μs 1.20μs 0.77μs 2.70μs 1.82μs 1990656 13.2ms 7.50ms 3.84ms 10.6ms 7.54ms
1152 2.91μs 1.29μs 0.85μs 2.99μs 1.99μs 2097152 15.4ms 9.01ms 4.15ms 13.0ms 9.07ms
1536 4.17μs 1.83μs 1.19μs 4.14μs 2.76μs 2359296 16.3ms 9.58ms 4.55ms 13.5ms 9.60ms
1728 4.90μs 2.19μs 1.46μs 4.53μs 3.02μs 2654208 18.4ms 10.5ms 5.10ms 14.7ms 10.4ms
2048 6.21μs 2.65μs 1.67μs 5.81μs 3.98μs 2985984 21.1ms 11.9ms 5.91ms 16.5ms 11.9ms
2304 6.92μs 2.89μs 1.89μs 6.26μs 4.23μs 3145728 22.6ms 13.1ms 6.18ms 18.9ms 13.6ms
3072 9.96μs 4.03μs 2.73μs 8.77μs 5.90μs 3538944 25.1ms 14.3ms 6.97ms 20.4ms 14.9ms
3456 10.7μs 4.82μs 3.51μs 9.54μs 6.61μs 3981312 28.4ms 16.2ms 7.74ms 22.6ms 16.5ms
4096 13.7μs 6.10μs 4.22μs 12.5μs 8.65μs 4194304 33.3ms 19.5ms 9.19ms 27.6ms 21.0ms
4608 14.6μs 6.71μs 5.10μs 13.6μs 9.42μs 4718592 33.2ms 20.6ms 9.75ms 28.2ms 20.5ms
5184 17.5μs 8.10μs 5.66μs 16.2μs 11.2μs 5308416 38.8ms 22.9ms 11.9ms 30.9ms 22.6ms
6144 20.2μs 9.50μs 6.45μs 19.5μs 13.4μs 5971968 44.7ms 25.9ms 13.8ms 34.1ms 24.9ms
6912 21.8μs 10.1μs 7.07μs 20.9μs 14.6μs 6291456 47.7ms 28.6ms 15.5ms 42.0ms 32.6ms
8192 29.6μs 14.2μs 8.76μs 26.9μs 18.8μs 7077888 54.1ms 32.0ms 16.8ms 43.6ms 31.4ms
9216 30.6μs 13.9μs 9.76μs 29.7μs 20.7μs 7962624 62.3ms 36.7ms 19.4ms 47.4ms 34.6ms
10368 36.1μs 16.8μs 11.6μs 34.2μs 24.0μs 8388608 70.0ms 40.1ms 21.7ms 59.2ms 44.3ms
12288 43.0μs 19.7μs 13.4μs 41.6μs 29.0μs 9437184 78.7ms 45.2ms 24.7ms 61.5ms 45.3ms
13824 47.4μs 20.8μs 14.7μs 47.1μs 33.5μs 10616832 86.1ms 51.9ms 27.0ms 65.6ms 47.2ms
16384 63.8μs 27.6μs 18.3μs 61.4μs 42.6μs 11943936 98.5ms 58.4ms 31.1ms 72.8ms 51.9ms
18432 66.9μs 28.9μs 20.7μs 63.9μs 45.7μs 12582912 0.11s 62.6ms 33.4ms 87.2ms 65.5ms
20736 81.3μs 34.4μs 23.9μs 71.0μs 51.6μs 14155776 0.12s 70.4ms 36.5ms 93.6ms 64.9ms
24576 99.7μs 41.4μs 28.4μs 88.3μs 65.0μs 15925248 0.14s 79.3ms 41.5ms 0.10s 71.4ms
27648 0.12ms 44.6μs 32.1μs 97.0μs 70.9μs 16777216 0.16s 87.2ms 46.7ms 0.12s 93.1ms
32768 0.14ms 59.5μs 43.6μs 0.13ms 91.6μs 18874368 0.17s 94.9ms 50.4ms 0.13s 99.0ms
36864 0.16ms 68.9μs 43.8μs 0.13ms 98.3μs 21233664 0.20s 0.11s 57.2ms 0.14s 99.5ms
41472 0.16ms 83.6μs 52.0μs 0.15ms 0.11ms 23887872 0.22s 0.12s 64.2ms 0.16s 0.11s
49152 0.22ms 97.3μs 66.2μs 0.19ms 0.14ms 25165824 0.25s 0.14s 67.6ms 0.18s 0.15s
55296 0.23ms 0.12ms 77.5μs 0.20ms 0.15ms 28311552 0.28s 0.15s 76.7ms 0.21s 0.16s
65536 0.31ms 0.15ms 99.7μs 0.26ms 0.19ms 31850496 0.31s 0.17s 86.9ms 0.23s 0.16s
73728 0.33ms 0.17ms 0.11ms 0.28ms 0.21ms 33554432 0.36s 0.19s 93.7ms 0.26s 0.20s
82944 0.35ms 0.20ms 0.12ms 0.31ms 0.23ms 37748736 0.38s 0.26s 0.12s 0.29s 0.23s
98304 0.46ms 0.25ms 0.15ms 0.44ms 0.32ms 42467328 0.43s 0.28s 0.13s 0.32s 0.25s
110592 0.48ms 0.28ms 0.16ms 0.43ms 0.32ms 47775744 0.49s 0.32s 0.16s 0.36s 0.27s
124416 0.59ms 0.34ms 0.19ms 0.54ms 0.39ms 50331648 0.54s 0.33s 0.16s 0.39s 0.30s
131072 0.68ms 0.38ms 0.19ms 0.58ms 0.43ms 56623104 0.57s 0.38s 0.18s 0.44s 0.34s
147456 0.75ms 0.40ms 0.21ms 0.66ms 0.49ms 63700992 0.64s 0.41s 0.20s 0.49s 0.38s
165888 0.81ms 0.45ms 0.25ms 0.74ms 0.53ms 67108864 0.80s 0.49s 0.24s 0.54s 0.44s
196608 1.02ms 0.58ms 0.31ms 0.92ms 0.66ms 75497472 0.83s 0.51s 0.26s 0.61s 0.47s
221184 1.13ms 0.62ms 0.35ms 1.01ms 0.73ms 84934656 0.92s 0.61s 0.29s 0.67s 0.54s
248832 1.36ms 0.73ms 0.37ms 1.12ms 0.83ms 95551488 0.98s 0.66s 0.33s 0.75s 0.59s
262144 1.45ms 0.88ms 0.42ms 1.27ms 0.93ms 100663296 1.12s 0.78s 0.35s 0.83s 0.66s
294912 1.57ms 0.87ms 0.46ms 1.39ms 1.00ms 113246208 1.19s 0.78s 0.39s 0.90s 0.71s
331776 1.86ms 0.97ms 0.52ms 1.54ms 1.12ms 127401984 1.34s 0.94s 0.44s 1.03s 0.81s
393216 2.33ms 1.26ms 0.65ms 1.92ms 1.41ms 134217728 1.61s 1.00s 0.47s 1.15s 0.93s
442368 2.49ms 1.35ms 0.71ms 2.13ms 1.56ms 150994944 1.77s 1.21s 0.53s 1.26s 1.04s
497664 2.88ms 1.68ms 0.84ms 2.40ms 1.73ms 169869312 1.88s 1.29s 0.59s 1.38s 1.11s
524288 3.19ms 1.88ms 0.91ms 2.71ms 1.99ms 191102976 2.16s 1.46s 0.66s 1.59s 1.28s
589824 3.41ms 1.94ms 1.01ms 2.95ms 2.10ms 201326592 2.34s 1.54s 0.70s 1.69s 1.37s
663552 3.91ms 2.19ms 1.11ms 3.25ms 2.39ms 226492416 2.71s 1.81s 0.79s 1.90s 1.55s
786432 5.03ms 2.80ms 1.34ms 4.11ms 2.97ms 254803968 2.90s 1.93s 0.88s 2.08s 1.66s

Table 2. Extensive timings for number theoretic transforms of lengths 26=64 up till 228=254803968
over the field 𝔽p with p=1439 ⋅228 ⋅ 36+1.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 17



10210 103 104 105 106 107 108 109 1010

10ns

0.1μs

1μs

10μs

0.1ms

1ms

10ms

0.1s

1s

zen4

xeon
i7

Figure 1. Graphical representation of the timings from Table 2, for the first three columns only.

5.1. Mono-threaded implementation

The main focus of this paper is on a mono-threaded implementation of number theoretic
transforms, while exploiting SIMD instruction-level parallelism. We optimized our code
for orders rwith 26⩽r<228 and 26 |r | 228 ⋅ 36. For reference and completeness, a full table
with all observed timings is provided in Table 2. For each entry, we computed three
timings and reported the median one. In Figure 1, we also plotted the corresponding
graph. For readability, this graph is limited to the x86-based architectures. The graph
shows a familiar nearly affine behavior for the computation time in the double loga-
rithmic scale. The sudden increase of the timings of the xeon curve near r≈216 is due to
an inefficient memory hierarchy on this computer.

Now one NTT of a power of two length r=2ℓ consists of /1 2r ℓ butterflies. For a better
understanding of the efficiency of our implementation it is therefore useful to divide our
timings by /1 2r log2 r, evenwhen r is not a power of two. Figure 2 shows the resulting nor-
malized timings. In addition, Figure 3 shows these normalized timings whenmeasuring
the cost of a butterfly in cycles instead of nanoseconds.

From Figure 3, we can read off that a doubled SIMD width indeed makes the imple-
mentation approximately twice as fast on x86-based architectures. Although Apple's M1
and M3 chips only support 128-bit wide SIMD, they actually behave more like CPUs
with 256-bit wide SIMD. This is probably due to the fact that Apple chips provide four
instead of two FMA units, which potentially doubles the instruction-level parallelism.
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For large r, the M1 and M3 perform even better, thanks to a more efficient memory
hierarchy.

When multiplying the cost in cycles with the SIMD width w∈{2, 4, 8} (while taking
w=4 for the M1 and M3 chips in view of what precedes), then we note that the cost of
a single butterfly stays between 5 and 8 cycles for r⩽105; this is similar to the perfor-
mance of traditional scalar NTTs. For larger orders r, the cost on x86-based platforms
slowly increases to 12 cycles per butterfly (and even to 15 cycles per butterfly for the
Xeon W system and r>225, but we recall that our implementation was not optimized as
heavily in this range).

We also note the somewhat irregular behavior of the graphs in Figures 2 and 3, with
discrepancies as large as 25% for close orders r. This is not due to inaccurate or irre-
producible timings: it turns out that the efficiency of the generated codelets is highly
dependent on the combinatorics of the divisors of r. In particular, if r is a power of two,
then the “pool of available strategies” is somewhat smaller than if r is divisible by a few
powers of 3. Consequently, the average costs in cycles tend to be slightly higher for
power of two lengths. When using NTTs as the workhorse of evaluation-interpolation
strategies (e.g. for integer multiplication), then it may be interesting to use truncated
Fourier transforms (TFTs) from [15, 20]: this should allow us to smooth out the graphs
from Figures 2 and 3, and benefit from the best possible NTTs for close orders r′⪆ r.
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Figure 2. Timings divided by /1 2 r log2 r, which corresponds to the number of butterflies in the case
when the order r of the NTT is a power of two.
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Figure 3. Variant of Figure 2 when using the cycle time as a unit instead of nanoseconds.
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i7 xeon zen4 m1 m3
f48 f61 i61 f48 f61 i61 f48 f61 i61 f48 f61 i61 f48 f61 i61

64 1.51 1.92 4.71 0.86 1.09 4.94 0.49 0.63 4.16 1.87 2.37 2.77 1.55 1.97 2.62
256 1.54 1.95 4.26 0.80 1.02 4.40 0.83 1.06 3.77 1.78 2.26 2.47 1.48 1.89 2.30

1024 1.41 1.79 4.19 0.75 0.96 4.45 0.87 1.10 3.81 1.69 2.15 2.55 1.44 1.83 2.36
4096 1.56 1.98 4.22 0.79 1.01 4.47 0.99 1.26 3.82 1.62 2.06 2.51 1.43 1.81 2.34

16384 1.56 1.98 4.89 0.77 0.98 4.58 0.92 1.17 4.05 1.71 2.18 2.69 1.51 1.91 2.59
65536 1.64 2.08 5.47 0.91 1.15 4.64 1.09 1.39 4.02 1.61 2.05 2.74 1.49 1.89 2.70

262144 1.73 2.19 5.49 1.19 1.51 5.22 1.03 1.31 4.29 1.73 2.19 2.78 1.60 2.03 2.70
1048576 1.91 2.43 5.29 1.26 1.60 5.96 1.06 1.34 4.25 1.76 2.24 2.91 1.60 2.04 2.69
4194304 2.02 2.57 5.41 1.35 1.72 7.48 1.15 1.46 5.07 1.92 2.43 3.18 1.85 2.35 2.81

16777216 2.23 2.84 6.48 1.39 1.76 7.58 1.33 1.70 6.37 1.99 2.52 3.19 1.87 2.38 2.87
67108864 2.56 3.25 8.37 1.80 2.28 7.59 1.61 2.05 8.81 1.99 2.53 3.25 2.06 2.62 2.92

Table 3. Comparison of the number of clock cycles per butterfly between our new implementation
and the implementation from [13]. We recall that the implementation from [13] uses a prime pwith
261⩽p<262 and unsigned integer arithmetic. The “f48” columns correspond to our new timings for
our prime pwith 248⩽p<249. The “f61” columns contain the scaled variants through multiplication
by /61 48. The “i61” columns show the timings for the algorithm from [13].

We also compared our new algorithm to the one from [13]. For this purpose, we
slightly adapted the companion C code from [13] to work also on M1 and M3 platforms
and to support orders r⩽228. The timings for both implementations are shown in Table 3.
We recall that the algorithm from [13] uses a 62 bit prime and unsigned integer arith-
metic, instead of a 49 bit prime and double precision floating point arithmetic. We have
also indicated the appropriately rescaled timings.

5.2. Pure SIMDmode

In the previous subsection, we explored the cost of computing a single NTT of order r
over 𝔽p, while exploiting SIMD support in the processor. However, in order to fully
benefit from hardware SIMD support of width w, it is better to compute w NTTs in par-
allel, as a single NTT of order r over 𝔽p

w. Here 𝔽p
w stands for the set of SIMD vectors of

length w over 𝔽p. Such a vector fits exactly into a single hardware SIMD register. We
will say that we are in pure SIMD mode when we can compute wNTTs in parallel in this
way. This typically happens when we need to compute many NTTs (e.g. when doing
an integer matrix product as in [13]), in chunks of w NTTs at a time. By contrast, we
are in thwarted SIMD mode if we want to compute a single or less than w NTTs, as in the
previous subsection. Although this mode may still benefit from SIMD arithmetic, this
typically requires non-trivial data rearrangements as described in section 4.4.

In order to compare the pure and thwarted modes, it is useful to compare the fol-
lowing three costs:

1. the cost of a single NTT of length r over 𝔽p,

2. w−1 times the cost of wNTTs of length r over 𝔽p, and

3. w−1 times the cost of a single NTT of length r over 𝔽p
w.

Although the first two costs ought to be similar most of the time, this is not necessarily
the case when r is close to one of the (L1, L2, L3, . . .) cache sizes. In Table 4, we show
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r i7 ×4 simd4 xeon ×8 simd8 zen4 ×8 simd8 m3 ×2 simd2
64 0.10μs 0.11μs 83.1ns 51.4ns 65.5ns 37.8ns 16.5ns 33.1ns 24.5ns 73.4ns 73.3ns 52.0ns
128 0.25μs 0.27μs 0.19μs 0.11μs 0.12μs 85.0ns 56.9ns 69.2ns 56.5ns 0.17μs 0.16μs 0.13μs
256 0.56μs 0.57μs 0.40μs 0.26μs 0.28μs 0.18μs 0.15μs 0.17μs 0.13μs 0.38μs 0.37μs 0.29μs
512 1.24μs 1.27μs 1.05μs 0.56μs 0.63μs 0.49μs 0.34μs 0.39μs 0.35μs 0.80μs 0.80μs 0.67μs
1024 2.57μs 2.65μs 2.32μs 1.20μs 1.29μs 1.21μs 0.77μs 0.81μs 0.77μs 1.82μs 1.80μs 1.67μs
2048 6.21μs 6.26μs 4.88μs 2.65μs 2.76μs 2.39μs 1.67μs 1.73μs 1.62μs 3.98μs 3.82μs 3.34μs
4096 13.7μs 13.2μs 11.5μs 6.10μs 6.35μs 5.21μs 4.22μs 4.22μs 4.21μs 8.65μs 8.41μs 7.67μs
8192 29.6μs 31.3μs 27.7μs 14.2μs 14.6μs 13.6μs 8.76μs 8.92μs 8.60μs 18.8μs 18.3μs 16.9μs
16384 63.8μs 64.9μs 57.6μs 27.6μs 31.9μs 33.5μs 18.3μs 18.6μs 17.9μs 42.6μs 40.1μs 36.6μs
32768 0.14ms 0.15ms 0.13ms 59.5μs 69.3μs 75.1μs 43.6μs 42.7μs 41.2μs 91.6μs 86.7μs 77.7μs
65536 0.31ms 0.30ms 0.31ms 0.15ms 0.17ms 0.16ms 99.7μs 0.10ms 95.1μs 0.19ms 0.18ms 0.17ms
131072 0.68ms 0.72ms 0.66ms 0.38ms 0.44ms 0.40ms 0.19ms 0.21ms 0.20ms 0.43ms 0.40ms 0.52ms
262144 1.45ms 1.49ms 1.53ms 0.88ms 1.02ms 0.94ms 0.42ms 0.43ms 0.43ms 0.93ms 0.87ms 0.87ms
524288 3.19ms 3.31ms 3.17ms 1.88ms 2.09ms 1.95ms 0.91ms 0.94ms 0.92ms 1.99ms 1.89ms 1.88ms
1048576 7.15ms 7.03ms 7.04ms 4.13ms 4.62ms 4.31ms 1.92ms 1.97ms 2.13ms 4.15ms 4.27ms 4.15ms
2097152 15.4ms 15.7ms 15.3ms 9.01ms 9.32ms 9.63ms 4.15ms 5.38ms 5.02ms 9.07ms 9.73ms 9.42ms
4194304 33.3ms 36.1ms 35.7ms 19.5ms 19.6ms 20.5ms 9.19ms 11.0ms 11.3ms 21.0ms 20.8ms 20.2ms
8388608 70.0ms 77.9ms 76.5ms 40.1ms 40.9ms 49.4ms 21.7ms 23.4ms 24.4ms 44.3ms 43.3ms 41.7ms
16777216 0.16s 0.16s 0.16s 87.2ms 90.5ms 0.11s 46.7ms 51.4ms 53.2ms 93.1ms 90.6ms 86.0ms

Table 4. Comparison between the timings of NTTs in the thwarted and pure SIMD modes. The
greyed entries correspond to timings that were obtained using slightly less optimized DFTs.

a detailed comparison of these costs for power of two lengths. The overhead of thwarted
with respect to pure SIMD is most important for small orders r.

5.3. Multi-threading

The main focus of this paper has been on an almost optimal implementation of the NTT
using SIMD double precision arithmetic, but in the mono-threaded case. Naturally, we
were curious about the performance of our work when using multiple threads. In this
last subsection, we report on some preliminary experiments, while emphasizing that this
is work in progress which has not yet benefited from a similar level of optimization. We
recompiled MATHEMAGIX with the --enable-threads configure option.

Before measuring the thread efficiency of our implementation, it is useful to analyze
the maximal theoretical speed-up that multi-threading may provide on our testing plat-
forms. For this, we created a simple loop that calls many times an empty function, and
measured the speed-upwhen executing this loop in amulti-threaded fashion. The results
have been reported in Table 5. For the x86-based platforms, we note that the number of
logical threads is twice as high as the number of physical threads, due to hyperthreading.

1 2 3 4 5 6 7 8 9 10 11 12 14 16 24 32
i7 1.00 2.04 2.79 3.35 3.72 4.09 4.50 4.64

xeon 1.00 2.00 2.99 4.00 5.00 5.98 6.61 6.96 6.84 7.38 7.57 7.47 7.65 7.78
zen4 1.00 1.99 2.93 3.83 4.69 5.57 6.41 7.23 8.07 8.99 9.79 10.6 12.2 13.1 17.5 20.7
m1 1.00 1.93 2.80 3.73 4.21 4.71 5.19 5.61
m3 1.00 1.89 2.82 3.75 4.67 5.32 5.96 6.62 7.26 7.87 8.46 8.56

Table 5. Speed-up when executing a dummy loop using multiple threads. The top row indicates
the number of threads that we use to execute our code. The main table indicates the observed
speed-ups. The greyed entries correspond to the degraded regime in which hyperthreading or effi-
ciency cores enter the stage.
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i7 xeon m1 m3
4 6 8 8 12 16 4 6 8 6 8 12

4096 1.16 2.12 1.94
8192 1.59 1.25 2.54 1.58 2.62 1.53

16384 2.05 1.75 1.34 1.12 3.04 2.24 2.07 3.59 2.44 1.91
32768 2.31 2.33 1.75 1.61 1.24 3.17 2.57 2.45 4.06 3.15 2.79
65536 2.66 2.62 2.17 2.42 1.94 3.30 2.83 2.82 4.42 3.48 3.36

131072 2.74 2.92 2.22 3.94 3.09 1.87 3.50 3.25 3.09 4.72 4.34 4.16
262144 2.65 2.98 2.44 4.75 3.27 2.22 3.69 3.65 3.77 4.87 4.34 5.07
524288 2.98 3.01 2.76 4.22 3.94 3.03 3.63 3.93 3.80 4.67 4.62 5.02

1048576 3.00 3.34 2.97 4.35 4.08 3.48 3.45 3.71 3.71 4.61 4.53 4.71
2097152 3.20 3.29 3.29 3.94 3.77 3.18 3.42 3.76 4.02 4.16 4.50 4.70
4194304 3.16 3.11 3.02 4.04 3.59 3.08 3.28 3.64 3.84 4.75 5.04 5.61
8388608 3.00 3.09 3.02 3.81 3.33 3.11 3.21 3.70 4.09 4.70 5.12 5.63

16777216 3.06 3.12 3.27 4.26 3.66 3.26 3.18 3.69 4.05 4.79 5.15 5.87
33554432 3.06 3.18 3.27 3.78 3.79 3.42 3.30 3.75 4.15 4.72 5.63 6.35

Table 6. Parallel speed-ups for our number theoretic transforms as a function of the transform
length r, the platform, and the number of threads 𝜏.

It turns out that our simple loop does benefit from hyperthreading, but that this is less
likely to happen for highly optimized HPC code like our NTTs. For the M1 and M3
processors, efficiency cores tend to be much slower than performance cores, with sim-
ilar pitfalls as in the case of hyperthreading. Note that the observed speed-ups always
decreased when using a number of threads that exceeds the maximal number of log-
ical threads for the platform.

For ourmain experiments, the number of threads 𝜏 is fixed for each individual timing.
The main codelets that benefit from multi-threaded execution are of the form Idn⊗T
or T⊗Idn for some other codelet T and some large integer n. For a parameter 𝜙 (that
we call the flooding factor), let us write n= n1+ ⋅ ⋅ ⋅ + n𝜏𝜙 with ⌊n/(𝜏 𝜙)⌋ = n1⩽ ⋅ ⋅ ⋅ ⩽
n𝜏𝜙=⌈n/(𝜏 𝜙)⌉. Now we subdivide the execution of, say, T⊗Idn into the execution of
chunks T⊗Idni for i=1, . . . , 𝜏 𝜙. These chunks are executed by our 𝜏 threads using the
work stealing paradigm. In our codelet factory, the most appropriate flooding factor
𝜙 for given n and T is determined dynamically.

The first scenario we tested is that of a single NTT of length r, while using 𝜏 threads.
For each platform, we investigate three values for 𝜏: the number of physical or perfor-
mance cores, the number of logical or performance plus efficiency cores, and an interme-
diate value. The resulting timings are shown in Table 6. We observed a large variance,
especially on x86 platforms. We consider the speed-ups on the m1 and m3 platforms
to be reasonably satisfactory for a first implementation. The timings for the other plat-
form are far from optimal. We omitted the results for the zen4 platform, since they were
so absurd that they require further investigation.

The second scenario is when we wish to compute a large number N of NTTs of the
same order r. This is similar to the pure SIMD mode that we investigated in subsec-
tion 5.2. We use a similar work stealing approach as above. Each individual thread
repeatedly computes NTTs of order r over 𝔽p

w. In Table 7, we reported detailed tim-
ings in the single case when N= r=1024 and only for the m3 platform. The table also
indicates the best flooding factor 𝜙 as a function of the number of threads 𝜏.
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1 2 4 8 16 32 64 128 256 time
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.50ms
2 1.93 1.93 1.94 1.93 1.93 1.92 1.91 1.88 1.84 1.81ms
3 2.89 2.90 2.88 2.88 2.88 2.87 2.86 2.84 2.76 1.21ms
4 3.82 3.85 3.83 3.81 3.80 3.78 3.73 3.67 3.52 0.91ms
5 4.65 4.66 4.61 4.63 4.61 4.62 4.41 4.34 4.24 0.75ms
6 3.18 4.01 4.56 4.83 4.67 4.87 4.85 4.72 4.28 0.72ms
7 3.58 4.49 4.75 4.65 5.01 5.21 5.17 4.94 4.32 0.67ms
8 3.85 4.80 4.84 5.01 5.24 5.38 5.33 4.91 4.33 0.65ms
9 4.32 5.00 4.99 5.01 5.46 5.64 5.45 5.14 4.30 0.62ms

10 4.56 5.75 5.56 5.78 5.68 5.87 5.71 5.18 4.29 0.60ms
11 4.01 5.14 5.51 5.74 5.79 5.87 5.81 5.14 4.19 0.60ms
12 4.07 4.78 5.26 5.11 5.38 5.39 5.33 4.93 3.81 0.65ms

Table 7. Speed-ups on anM3 processor forN≔1024NTTs of length r≔1024with SIMD coefficients
in 𝔽p

2, where p≔1439⋅228 ⋅36+1 , as a function of the number 𝜏 of threads and the flooding factor 𝜙.
The highlighted entries in each row correspond to the best flooding factor for a given number of
threads. The last column reports the timing for the best flooding factor.
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