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The evaluation of a polynomial at several points is called the problem of multi-point
evaluation. We design slightly new faster deterministic algorithms to solve this problem
for an algebraic computational model. For this purpose, we analyze the precompu-
tation costs of recent amortized evaluation algorithms, and then study the complexity
of the problem as a function of the number of evaluation points.
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1. INTRODUCTION

Let 𝕂 be an effective field, so that we have algorithms for the field operations. Given
a polynomial P∈𝕂[x1, . . .,xn] and a tuple 𝜶=(𝛼1, . . .,𝛼N)∈(𝕂n)N of points, the computa-
tion of P(𝜶)=(P(𝛼1), . . . ,P(𝛼N))∈𝕂N is called the problem of multi-point evaluation. The
converse problem is called interpolation and takes a candidate support of P as input.

These problems naturally occur in several areas of applied algebra. For instance
in [16], we have shown that fast multi-point evaluation leads to fast polynomial system
solving. Multi-point evaluation with a large number of variables also leads to fast mod-
ular composition [20]. The more specific bivariate case n= 2 appears for example in
the computation of generator matrices of algebraic geometry error correcting codes [21].

The problem of multi-point evaluation is typically studied in the case when N≍ dn,
where d is the total degree of P. One particularity of this paper is that, besides this classical
case, we also study the complexity when N and dn have different orders of magnitude.
Especially in the case when N≪ dn, our recent work [14, 17] on amortized multi-point
evaluation (when the set of points is fixed) turns out to be very useful; this applica-
tion was also one of our motivations for the present work.
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1.1. Main results
In this paper, the number n of variables is always assumed to be fixed, so the con-
stants hidden in the “O” of our complexity bounds depend on n. For complexity
analyses, we will only consider algebraic complexity models like computation trees
or RAM machines [5]. The time complexity then measures the number of arithmetic
operations and zero-tests in 𝕂. The soft-Oh notation f (t)= Õ(g(t)) is a shorthand for
f (t)= g(t)(log(g(t)))O(1); see [9, chapter 25, section 7] for technical details.

The constant𝜔will denote a real value between 2 and 3 such that twom×mmatrices
over a commutative ring can be multiplied withO(m𝜔) ring operations. The current best
known bound is 𝜔<2.371552 [30]. The constant 𝜔2 will be a real value between 3 and 4
such that the product of am×m2 matrix by am2×mmatrix takesO(m𝜔2) operations; one
may take 𝜔2<3.250385 [30].

The first line of results, presented in section 2, concerns the derandomization of the
Nüsken–Ziegler algorithm [26]. When n⩾3 our new deterministic bound coincides with
their probabilistic one; see Theorem 2.6. For n=2 our deterministic evaluation in degree
d at O(d2) points costs Õ(d3) operations in 𝕂, whereas the probabilistic version of [26]
takes Õ(d1+𝜔2/2), which tends to Õ(d2.5) when 𝜔2 tends to the lower bound 3; see Theo-
rems 2.7 and 2.8, and Remark 2.4.

In section 3 we turn to the amortized multi-point evaluation of multivariate polyno-
mials. For such algorithms, the set of evaluation points is fixed, sowemay use potentially
expensive precomputations as a function of these points. A softly optimal algorithm for
amortizedmulti-point evaluationwas first given in [17]. In section 3we provide a careful
analysis of the cost of the precomputations. Building on algorithms from [23], it turns
out that this can be done with a complexity exponent below the one of linear algebra: see
Lemma 3.6. We next use this to derive our main complexity bounds for non-amortized
multi-point evaluation: Theorems 3.9 and 3.13. The latter theorem slightly improves
upon the Nüsken–Ziegler algorithm when n=3 or n⩾7; see Remark 3.16 for details.
We also show that the evaluation at O((dn)(n−1)/(𝜔(n−2)+1)) points can be performed in
softly linear time, which again improves upon the Nüsken–Ziegler algorithm.

If n= 2, then Theorem 3.9 also improves on our deterministic version of the
Nüsken–Ziegler algorithm from Theorem 2.7; see Remark 3.10. The comparison with
the randomized version is given in Remark 3.11.

In order to design the above deterministic algorithms for any effective field𝕂, we fre-
quently need to assume that the cardinality of𝕂 is sufficiently large or that we explicitly
know an element of a sufficiently large multiplicative order. This subtlety only concerns
finite fields and is usually addressed by computing over an algebraic extension of 𝕂.
Since we work over an arbitrary effective field in this paper, we need to deal with this
extension issue in detail. In particular, we may not assume that the cardinality or char-
acteristic of 𝕂 are known. In Appendix A, we present a general way to address these
issues. Our solution can be implemented with programming languages that support
generic programming, such as C++, MATHEMAGIX [18], etc.

1.2. Related work
The general problem of multivariate multi-point evaluation is notoriously hard. If𝕂=ℚ
or 𝕂 is a field of finite characteristic, then theoretical algorithms due to Kedlaya and
Umans [20] achieve a complexity exponent 1+𝜖, where 𝜖>0 is a constant that can be
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taken arbitrarily close to zero. Unfortunately, to our best knowledge, these algorithms
do not seem suitable for practical purposes [13, Conclusion]. Recent advances in this
vein are to be found in [2, 3].

The best previously known complexity bound for n=2 and for general fields and
input is due to Nüsken and Ziegler [26]: the evaluation of P at N=O(degx1 Pdegx2 P)
points can be done using O(degx1 P (degx2 P)𝜔2/2) operations in 𝕂, assuming suitable
coordinates. So, for P of total degree d, the cost is an expected number of O(d𝜔2/2+1)
operations in 𝕂, that equals O(d3) without fast linear algebra, and that tends to O(d2.5)
when 𝜔2 tends to 3. We further mention [19] for efficient algorithms for special sets of
points 𝜶.

Another recent result for any field𝕂, and for n=2, is due toNeiger, Salvy, Schost, and
Villard [25]. Their algorithm is derived from their fast modular composition algorithm.
Given f , g, and h in 𝕂[x] of degree ⩽D, they show how to compute the polynomial
f ∘ g rem h by a probabilistic algorithm of Las Vegas type using an expected number of

Õ(D𝜅), where 𝜅≔1+ 1
1

𝜔−1 +
2

𝜔2−2

operations in 𝕂; see [25, Theorem 1.1]. Then the bivariate evaluation problem reduces
to modular composition in the following way. First, up to a sufficiently generic linear
change of the coordinates, their exist 𝜒∈𝕂[x] of degree N and v∈𝕂[x] of degree <N
such that 𝜶={(a,v(a)) :𝜒(a)=0}, so P(𝜶) can easily be recovered from P(x,v(x)) rem𝜒(x).
In [25, section 10.3] it is shown that P(x, v(x)) rem 𝜒(x) can be computed using Õ(N𝜅)
operations in 𝕂, whenever deg P=O(N1/2), 𝕂 has characteristic 0, and the input is suf-
ficiently generic. Without fast linear algebra, that is when 𝜔=3, one has 𝜅=5/3. With
the best known value for 𝜔, one has 𝜅<1.42945. If 𝜔 and 𝜔2 tend to their trivial lower
bound 2 and 3, then 𝜅 tends to 4/3.

In recent years, softly linear time has been achieved for multi-point evaluation and
interpolation when 𝜶 is a fixed generic tuple of points [15, 24]. These algorithms are
amortized in the sense that potentially expensive precomputations as a function of 𝜶
are allowed. When the dimension n is arbitrary but fixed, the amortized algorithms
from [15] generalize the classical univariate “divide and conquer” approach, as pre-
sented for instance in [9, chapter 10]. The results in [24] restrict to the case n=2. They
take into account the partial degrees of P and are based on changes of polynomial bases
that are similar to the ones of [12, section 6.2].

The article [14] handles arbitrary (i.e. possibly non-generic) tuples of evaluation
points 𝜶, while restricting to the amortized bivariate case n=2 and degP=O(N1/2). New
techniques for general dimensions n were presented in [17]. In the present paper we
analyze the cost of the precomputations needed in [17]. This is key for our improved
complexity bounds for non-amortized multi-point evaluation, especially whenN is sub-
stantially smaller than (deg P)n.

2. THE NÜSKEN–ZIEGLER ALGORITHM

Throughout this paper, we assume the dimension n to be fixed. So the constants hidden
in the ′′O′′ of the complexity estimates will depend on n. We recall that P(𝜶) denotes
the tuple of values (P(𝛼1), . . . ,P(𝛼N)). The 𝕂-vector space of the polynomials of total
degree <d in𝕂[x] will be written𝕂[x]<d. The cardinality of 𝜶 is written |𝜶|.
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We denote by M(d) the time that is needed to compute a product PQ of two poly-
nomials P,Q∈𝕂[x] of degree <d. We make the usual assumptions that M(d)/d is
non-decreasing as a function of d and that M(k d)=O(kM(d)) whenever k=O(d).
Using a variant of the Schönhage–Strassen algorithm [6], it is well known that M(d)=
O(d log d log log d). If we restrict our attention to fields𝕂 of positive characteristic, then
we may even takeM(d)=O�d log d4log

∗d� [10].

2.1. Separating forms
A linear form u∈𝕂[x1, . . .,xn] is said to separate the points 𝜶 if it takes pairwise different
values at pairwise different points of 𝜶. It will often be convenient to split 𝜶 into non-
empty subsequences 𝜶1, . . . , 𝜶L. Then joined separating forms for each of the 𝜶i with
i=1, . . . ,L may be computed as follows.

LEMMA 2.1. Let 𝒮 be a set of >�|𝜶1|2 �+ ⋅ ⋅ ⋅ + �|𝜶L|2 � elements in 𝕂. We can compute a joined
separating form x1+𝜆2x2+ ⋅ ⋅ ⋅ +𝜆nxn for 𝜶1, . . . , 𝜶L with (𝜆2, . . . , 𝜆n)∈𝕂n−1 using

O(|𝜶1|2+ ⋅ ⋅ ⋅ + |𝜶L|2)

operations in 𝕂.

Proof. Recall that n=O(1) is constant. We proceed by induction on n. If n=1 then the
proof is immediate. Assume that n⩾2 and let

𝜋: 𝕂n → 𝕂n−1

(x1, . . . ,xn) ↦ (x2, . . . ,xn).

By the induction hypothesis, wemay compute 𝜆3′ ,...,𝜆n′ ∈𝕂n−2 in timeO(|𝜶1|2+⋅⋅⋅+|𝜶L|2),
such that u≔x2+𝜆3′ x3+ ⋅ ⋅ ⋅ +𝜆n′ xn is a joined separating form for 𝜋(𝜶1), . . . ,𝜋(𝜶L). Let

𝒳≔{{{{{{{{{{{{{{{{{{{{{{{{− x1(𝛼)−x1(𝛼′)
u(𝜋(𝛼))−u(𝜋(𝛼′)) : 1⩽ i⩽L, 𝛼,𝛼′∈𝜶i,𝜋(𝛼)≠𝜋(𝛼′)}}}}}}}}}}}}}}}}}}}}}}}}

with

|𝒳|⩽�|𝜶1|2 �+ ⋅ ⋅ ⋅ +�|𝜶L|2 �.

Here x1(𝛼) stands for the first coordinate of 𝛼. If 𝜆2∉𝒳, then x1+𝜆2u is a joined sepa-
rating form for 𝜶1, . . . , 𝜶L. We may compute u(𝜋(𝜶)) using O(|𝜶1|+ ⋅ ⋅ ⋅ + |𝜶L|) operations
in 𝕂 and then 𝒳 using O(|𝜶1|2+ ⋅ ⋅ ⋅ + |𝜶L|2) further operations. We finally pick 𝜆2∈𝒮∖𝒳
and derive the required joined separating form x1+𝜆2 u (so 𝜆i=𝜆2 𝜆i′ for i⩾3) using
O(n)=O(1) operations in𝕂. □

If x1 is a separating form for 𝜶, then there exist a monic separable polynomial 𝜒(x) of
degree ⩽N in𝕂[x1] and v2, . . . ,vn other polynomials in𝕂[x]<N such that

𝜶={(𝜁,v2(𝜁), . . . ,vn(𝜁)) :𝜒(𝜁)=0}.

If the points of the sequence 𝜶 are pairwise distinct, it is well-known that these polyno-
mials can be computed using O(M(N) log N) operations in 𝕂, thanks to sub-product
tree algorithms; see [9, chapter 10] or [4], for instance. Otherwise we will rely on the
following lemma.
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LEMMA 2.2. The univariate representation of 𝜶 can be computed using O(M(N) log2N) oper-
ations in 𝕂.

Proof. We proceed recursively as follows. If N = 1 then the univariate representa-
tion is obtained easily in time O(1). Otherwise, we let h≔⌈N/2⌉ and we recursively
compute the univariate representations 𝜒 (1), v2

(1), . . . , vn(1) of 𝜶(1)= (𝛼1, . . . , 𝛼h) and
𝜒(2),v2

(2),...,vn(2) of 𝜶(2)=(𝛼h+1,...,𝛼N). We next compute Ξ≔gcd(𝜒(1),𝜒(2)), 𝜒
˘
(2)≔𝜒(2)/Ξ,

and vi
(2)≔ vi

(2) rem 𝜒
˘
(2) for i= 2, . . . , n. In this way, the univariate representation of 𝜶

can be obtained as 𝜒≔𝜒(1)𝜒
˘
(2), and

vi≔�𝜒
˘
(2)(𝜒(1))′vi

(1)+𝜒
˘
(1)(𝜒(2))′v

˘
i
(2)�U rem 𝜒

for i=2,...,n, whereU is the inverse of 𝜒′modulo 𝜒. The costC(N) of thismethod satisfies

C(N)=C(h)+C(N−h)+O(M(N) logN),

which yields C(N)=O(M(N) log2N). □

2.2. Evaluation when x1 is a separating form

Let m and l be positive integer parameters such that ml⩾d and ml=O(d). We expand
the polynomial P∈𝕂[x1, . . . ,xn]<d to be evaluated as

P(x1, . . . ,xn)= �
i2<l, . . . ,in<l

P(i2, . . . ,in)(x1, . . . ,xn)x2
mi2 ⋅ ⋅ ⋅ xnmin, (2.1)

where degxj P(i2, . . . ,in)<m for i2< l, . . . , in< l and j⩾2.
We partition 𝜶 into subsequences 𝜶1,...,𝜶Lwith L≔⌈N/d⌉ and |𝜶i|⩽d for i=1,...,L. Let

𝜎l: {0, . . . , l−1}n−1 → {0, . . . , l l−1−1}
𝜎m: {0, . . . ,m−1}n−1 → {0, . . . ,mn−1−1}

be arbitrary bijections, e.g. 𝜎l(i0, . . . , in−2)≔ i0+ i1 l+ ⋅ ⋅ ⋅ + in−2 ln−2 and similarly for 𝜎m.

Algorithm 2.1
Input. P∈𝕂[x1, . . . ,xn]<d and 𝜶∈(𝕂n)N.
Output. P(𝜶).
Assumption. x1 is a joined separating form for 𝜶1, . . . , 𝜶L.

1. If N⩽d(n+1)/2 then set m≔⌈d/L1/(n−1)⌉. Otherwise set m≔⌈d1/2⌉.
Set l≔⌈(d+1)/m⌉.

2. For k=1, . . . ,L, compute the univariate representation 𝜒k(x1),vk,2(x1), . . . ,vk,n(x1)
of 𝜶k. Note that deg 𝜒k⩽d for all k.

3. For k=1, . . . ,L and j2=0, . . . ,m−1, . . . , jn=0, . . . ,m−1, compute

V𝜎m(j2, . . . , jn),k≔vk,2
j2 ⋅ ⋅ ⋅ vk,n

jn rem 𝜒k.

We regard V as a mn−1×L matrix over𝕂[x1], with entries of degrees <d.
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4. For k=1, . . . ,L, compute vk,2m rem 𝜒k, . . . ,vk,nm rem 𝜒k and then

vk,2
mi2 ⋅ ⋅ ⋅ vk,n

min rem 𝜒k ,

for i2=0, . . . , l−1, . . . , in=0, . . . , l−1.
5. For j2=0,...,m−1,..., jn=0,...,m−1, let Z𝜎l(i2, . . . ,in),𝜎m(j2, . . . , jn)(x1)∈𝕂[x1] denote the

coefficient P(i2, . . . ,in),(j2, . . . , jn) of x2
j2 ⋅ ⋅ ⋅ xn

jn in P(i2, . . . ,in)∈𝕂[x1][x2, . . .,xn]. We regard Z
as a ln−1×mn−1 matrix over𝕂[x1], with entries of degrees ⩽d. Compute

W≔ZV.
6. For k=1, . . . ,L, compute

Rk≔ �
i2<l, . . . ,in<l

W𝜎l(i2, . . . ,in),kvk,2
mi2 ⋅ ⋅ ⋅ vk,n

min rem 𝜒k.

7. Return the concatenation of the vectors Rk(x1(𝜶k)) for k=1, . . . , L, where x1(𝜶k)
stands for the vector with the first coordinates of the points in 𝜶k.

PROPOSITION 2.3. Algorithm 2.1 is correct and takes Õ(dn+N𝜔−2 dn+2−𝜔) operations in 𝕂
if N⩽d(n+1)/2 and Õ(Nd(n−1)(𝜔−1)/2) operations otherwise.

Proof. The assumption on x1 is needed for step 2. For all k=1,...,L and all points (a1,...,an)
in 𝜶k we verify in step 6 that

Rk(a1)= �
i2<l, . . . ,in<l

W𝜎l(i2, . . . ,in),k(a1)a2
mi2 ⋅ ⋅ ⋅ anmin.

In step 5 we have

W𝜎l(i2, . . . ,in),k(a1) = �
j2<m, . . . , jn<m

Z𝜎l(i2, . . . ,in),𝜎m(j2, . . . , jn)(a1)V𝜎m(j2, . . . , jn),k(a1)

= �
j2<m, . . . , jn<m

P(i2, . . . ,in),(j2, . . . , jn)(a1)a2
j2 ⋅ ⋅ ⋅ an

jn

= P(i2, . . . ,in)(a1, . . . ,an).

From the expansion (2.1), we deduce that Rk(a1)=P(a1, . . . ,an).
By Lemma 2.2, step 2 takes Õ(N) operations in𝕂. Steps 3 and 4 take

O(mn−1M(N)+ ln−1M(N))= Õ((ln−1+mn−1)N)

operations. Step 6 contributes O(ln−1M(N)) = Õ(ln−1N) to the cost. Step 7 performs
univariate multi-point evaluations in total time O(M(N) logN). For the complexity of
step 5 we distinguish the following cases:
• If N⩽ d(n+1)/2, then L=O(d(n−1)/2), m=O(d/L1/(n−1)), d1/2=O(m), l=O(L1/(n−1)),

and l=O(m). Consequently, ln−1=O(min(ln−1,mn−1,L)), so the product ZV can be
split into products of ln−1× ln−1 matrices, and the cost of step 5 is

O((((((((((((((
mn−1

ln−1
L

ln−1 (l
n−1)𝜔M(d))))))))))))))) = O(Lmn−1 l(n−1)(𝜔−2)M(d))

= O((((((((((((L dn−1

L L𝜔−2M(d)))))))))))))
= Õ(L𝜔−2dn).
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In this case, the total cost of the algorithm is

Õ((ln−1+mn−1)N+L(𝜔−2)dn) = Õ((((((((((((d
n−1

L N+�Nd +1�
(𝜔−2)

dn))))))))))))
= Õ(dn+N𝜔−2dn+2−𝜔).

• Otherwise, we have d(n+1)/2<N, l≍m≍d1/2, and d(n−1)/2=O(L). Consequently, ln−1=
O(min(ln−1,mn−1,L)), the product ZV can again be split into products of ln−1× ln−1

matrices, and the cost of step 5 becomes

O((((((((((((((
mn−1

ln−1
L

ln−1 (l
n−1)𝜔M(d))))))))))))))) = O(L l(n−1)(𝜔−1)M(d))

= O��Nd +1� l(n−1)(𝜔−1)M(d)�

= Õ(Nd(n−1)(𝜔−1)/2).

This dominates the total cost of the algorithm since

Õ((mn−1+ ln−1)N)= Õ(Nd(n−1)/2). □

Remark 2.4. The complexity of the productZV in step 5 of Algorithm 2.1 actually depends
on the ratios of the dimensions of Z and V. For simplicity, we have reduced this pro-
duct to several products of ln−1× ln−1 matrices, whence a complexity bound in terms
of 𝜔. This choice is slightly sub-optimal if 𝜔>2; see [30]. For instance, if N=O(dn),
then L=O(dn−1) and the product ZV can be done faster, using only

Õ((d(n−1)/2)𝜔2d)= Õ(d(n−1)(𝜔2/2)+1).

operations in𝕂. The product W≔ZV still dominates the total cost of Algorithm 2.1.

Remark 2.5. In their article [26], Nüsken and Ziegler present Algorithm 2.1 in detail only
for the case where n=2 and L=1; see [26, Theorem 8]. They give the complexity bound
in terms of𝜔2, recalled in Remark 2.4, but also in terms of the partial degrees in x1 and x2.
The case where n⩾3 is only mentioned in the conclusion of [26].

2.3. Case of at least three variables

In general, the form x1 does not necessarily separate all the 𝜶i for i=1, . . . , L. In such
degenerate situations, onemay apply a suitable change of coordinates before usingAlgo-
rithm 2.1, provided that the cardinality of𝕂 is sufficiently large. In [26, section 6], Nüsken
and Ziegler use a randomized method to compute such a change of coordinates. In this
section, our first contribution is an alternative deterministic method, that takes advan-
tage of the splitting of 𝜶 into 𝜶1, . . . , 𝜶L. Another contribution is the complexity analysis
in terms of the number of evaluation points. The following theorem summarizes the
cost of our deterministic version of the Nüsken–Ziegler algorithm for n⩾3.
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THEOREM 2.6. Let n⩾3 be a fixed dimension, let P∈𝕂[x1, . . . , xn] be of total degree ⩽d, let
𝜶∈ (𝕂n)N, and let 𝜃≔ logN/log(dn), that is N=(dn)𝜃. Then P(𝜶) can be computed using
Õ((N+dn)𝜂n(𝜃)) operations in 𝕂, where

𝜂n(𝜃)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{ 1 if 𝜃⩽ 1

n

(𝜔−2)�𝜃− 1
n�+1 if 1

n ⩽𝜃⩽ 1
2 +

1
2n

𝜃+�1− 1
n�

𝜔−1
2 if 1

2 +
1
2n ⩽𝜃⩽1

1+�1− 1
n�

𝜔−1
2𝜃 if 1⩽𝜃.

Proof. Assume first that we are given max �L �d2�, d� + 1 distinct elements in 𝕂. By
Lemma 2.1, we may compute a joined separating form x1+ 𝜆2 x2+ ⋅ ⋅ ⋅ + 𝜆n xn for
𝜶1, . . . , 𝜶L using

O(Ld2)=O��Nd +1�d2�=O(Nd+d2)=O((dn)max(1,𝜃+1/n)) (2.2)

operations in𝕂. Let

A: 𝕂n → 𝕂n

(x1, . . . ,xn) ↦ (x1+𝜆2x2+ ⋅ ⋅ ⋅ +𝜆nxn,x2, . . . ,xn).

We replace P by P∘A−1≔P(x1− (𝜆2x2+ ⋅ ⋅ ⋅ +𝜆nxn),x2, . . . ,xn). This takes Õ(dn) opera-
tions in 𝕂 thanks to [16, Appendix A, Proposition A.5] and the d+1 distinct elements
in 𝕂. We next replace 𝜶 by (A(𝛼): 𝛼∈𝜶), using O(N) further operations. In this way,
we reduce the problem to the case where x1 separates 𝜶. It remains to compute P(𝜶) via
Proposition 2.3.

If 𝜃 ⩽ 1/n, that is N ⩽ d, then the cost of Algorithm 2.1 is Õ(dn). If 𝜃 ⩾ 1/n and
N⩽d(n+1)/2 then N⩽dn−1 (since n⩾3) and the cost of Algorithm 2.1 becomes

Õ(dn+(dn)(𝜔−2)𝜃+1+(2−𝜔)/n)= Õ((dn)(𝜔−2)(𝜃−1/n)+1).

This dominates the contribution (2.2), since

𝜃+ 1
n⩽ 1

2 +
3
2n⩽(𝜔−2)�𝜃− 1

n�+1.

If N⩾d(n+1)/2 and N⩽dn, then the cost of Algorithm 2.1 becomes

Õ(Nd(n−1)(𝜔−1)/2)= Õ((dn)𝜃+(1−1/n)(𝜔−1)/2),

which again dominates the contribution (2.2). Finally, if N⩾dn then the cost is

Õ(Nd(n−1)(𝜔−1)/2)= Õ(N1+(1−1/n)(𝜔−1)/(2𝜃)),

still dominating the contribution (2.2).
It remains to deal with the case wheremax�L�d2�,d�+1 distinct elements in𝕂 are not

given. We appeal to PropositionA.2: the hypotheses aremet since the values returned by
the present evaluation algorithm are independent of themax�L�d2�,d�+1 given elements
of 𝕂 or of an algebraic extension of it. The complexity overhead does not exceed (2.2),
up to logarithmic factors. □

Figure 2.1 represents the complexity exponent 𝜂n(𝜃) introduced in Theorem 2.6.
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𝜃

1

0 1

𝜔
2 −

𝜔−2
2n

𝜔+1
2 − 𝜔−1

2n

1
n

1
2 +

1
2n

𝜂n(𝜃)

Figure 2.1. Complexity exponent 𝜂n(𝜃) for the evaluation in degree d at N=d𝜃n points when n⩾3,
via Theorem 2.6.

2.4. Bivariate case
The bivariate case n=2 behaves differently from the general one, because the determin-
istic search of a separating form becomes the bottleneck. The following theorem summa-
rizes the cost of our deterministic bivariate version of the Nüsken–Ziegler algorithm.

THEOREM 2.7. Let P∈𝕂[x1,x2] be of total degree⩽d, let 𝜶∈(𝕂2)N, and let 𝜃≔logN/log(d2).
Then P(𝜶) can be computed using Õ�(N+d2)𝜂2

∗(𝜃)� operations in 𝕂, where

𝜂2∗(𝜃)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{
{
{ 1 if 𝜃⩽ 1

2

𝜃+ 1
2 if 1

2 ⩽𝜃⩽1

1+ 1
2𝜃 if 1⩽𝜃.

Proof. Assume first that we are given L �d2�+1 elements in 𝕂. By Lemma 2.1, a joined
separating form x1+𝜆1x2 for 𝜶1, . . . , 𝜶L can be obtained in time

O(Ld2)=O(Nd+d2)=O((d2)max(1,𝜃+1/2)). (2.3)

Applying the linear change of coordinates to P and 𝜶 takes Õ(d2+N) operations: here we
may use [1, Lemma 1] to change the variables independently of the cardinality of 𝕂.

If N⩽d3/2, then the cost of Algorithm 2.1 is

Õ(d2+N𝜔−2d4−𝜔)= Õ((d2)max(1,(𝜔−2)(𝜃−1/2)+1)),

by Proposition 2.3. Since 𝜔⩽3, we also verify that

max(1, (𝜔−2)(𝜃−1/2)+1)⩽max(1,𝜃+1/2).

If N⩾d3/2, then the cost of Algorithm 2.1 is Õ(Nd(𝜔−1)/2)= Õ(Nd), which is again dom-
inated by (2.3), up to logarithmic factors.

Finally, if we are not given L�d2�+1 elements in𝕂, then we apply Proposition A.2, as
in the proof of Theorem 2.6. □
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1

1
2

𝜔+3
4

𝜔+2
4

3
4

𝜂2(𝜃)
𝜂2∗(𝜃)

0 1 𝜃

3
2

Figure 2.2. Deterministic and probabilistic complexity exponents for bivariate evaluation in degree d
at d2𝜃 points, via Theorems 2.7 and 2.8.

The next theorem rephrases the probabilistic version of Nüsken and Ziegler for two
variables and when N varies.

THEOREM 2.8. Let P∈𝕂[x1,x2] be of total degree⩽d, let 𝜶∈(𝕂2)N, let 𝜃≔logN/log(d2), and
assume that we are given 2L�d2� distinct elements in 𝕂. Then P(𝜶) can be computed by a prob-
abilistic algorithm of Las Vegas type using an expected number of Õ((N+ d2)𝜂2(𝜃)) operations
in 𝕂, where

𝜂2(𝜃)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{
{ 1 if 𝜃⩽1/2
(𝜔−2)�𝜃− 1

2�+1 if 1
2 ⩽𝜃⩽ 3

4

𝜃+ 𝜔−1
4 if 3

4 ⩽𝜃⩽1

1+ 𝜔−1
4𝜃 if 1⩽𝜃.

Proof. In order to find a joined separating form x1+𝜆2x2 for 𝜶1, . . . , 𝜶L, it suffices to take
a random 𝜆2 in the given subset of 𝕂. The probability of success for each trial is ⩾1/2;
see the proof of Lemma 2.1. So the expected number of trials is O(1). The rest of the
proof is adapted from the one of Theorem 2.7. Alternatively, one may adapt the proof of
Theorem 2.6, by noting that the cost to compute a separating form is negligible, if we are
allowed to use a randomized algorithm. □

Figure 2.2 displays the complexity exponents introduced in Theorem 2.7 and The-
orem 2.8. Note that 𝜂2∗=𝜂2 when 𝜔=3.

3. AMORTIZED MULTIVARIATE EVALUATION

In this section, we refine our complexity analysis of the amortized algorithm for the eval-
uation of multivariate polynomials from [17]. The main novelty is a precise analysis
of the cost of the required precomputations. From this, we will be able to derive new
complexity bounds for non-amortized multi-point evaluation. Throughout this section
P∈𝕂[x1, . . .,xn] and 𝜶∈(𝕂n)N denote the polynomial and the tuple of evaluation points,
respectively. We also write I for the ideal of𝕂[x1, . . . ,xn] that consists of all polynomials
that vanish at 𝜶. We recall that the dimension n is fixed.
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3.1. Shifted Popov forms
Let us consider a vector

𝒔≔(s1, . . . , sn)∈ℤn,
called a shift for the degrees, the 𝒔-degree of a row vector 𝒂= (a1, . . . , an) in 𝕂[x]n is
defined as

deg𝒔 𝒂≔max (deg a1+ s1, . . . ,deg an+ sn).

If 𝒂 is non-zero, then the pivot index of 𝒂 is the largest index i for which the latter
maximum is reached. The entry ai is called the pivot, and its degree is the pivot degree.
If 𝒂 is zero, then its pivot index is defined to be zero.

Let M denote a m×nmatrix with entries in𝕂[x]. The matrix M is in s-Popov form if
the following properties are satisfied:
• The positive pivot indices of the rows of M are in increasing order;
• The pivots of the rows of M are monic (i.e. have leading coefficient 1);
• The pivots of M have a degree strictly larger than the other elements in their column.
If m= n and M is non-singular, then its pivots are the diagonal elements. In this case,
M satisfies the “predictable degree” property:

LEMMA 3.1. Let M be a non-singular n×n matrix in Popov form. If 𝒃= (b1, . . . , bn)≔𝒂M
for some row vector 𝒂∈𝕂[x]n, then

deg𝒔 𝒃= max
i=1, . . . ,n

(di+deg ai),

where di denotes the 𝒔-degree of the i-th row of M.

Proof. See [22, Theorem 1.1], for instance. □

Given non-constant polynomials 𝜒1, . . . , 𝜒L in 𝕂[x], and given a r×L matrix F with
entries Fi, j in𝕂[x]<deg𝜒j, Popov forms will be used to compute the kernel of the map

E: 𝕂[x]r ⟶ �
j=1, . . . ,L

𝕂[x]/(𝜒j)

u=(ui)i=1, . . . ,r ⟼ uF=(((((((((((((( �
i=1, . . . ,r

Fi, jui))))))))))))))j=1, . . . ,L

.

Since the vectors (𝜒1, 0, . . . , 0), (0,𝜒2, 0, . . . , 0), . . . , (0, . . . , 0,𝜒L) are a free family in kerE, the
kernel of E is a free 𝕂[x]-module of rank r.

PROPOSITION 3.2. [23, Theorem 1.4] Given non-constant polynomials 𝜒1, . . . , 𝜒L in 𝕂[x] and
an r×L matrix F with entries Fi, j in𝕂[x]<deg𝜒j, there exists a unique r× r matrix U in s-Popov
form such that the rows of U are a basis of ker E. If L=O(r) then U can be computed using
Õ(r𝜔−1N) operations in 𝕂, where N≔deg 𝜒1+ ⋅ ⋅ ⋅ +deg 𝜒L.

3.2. Admissible orderings
Let𝔐 be the set of monomials x1

e1 ⋅⋅⋅xnen with e1,...,en∈ℕ. Any polynomial P∈𝕂[x1,...,xn]
can uniquely be written as a linear combination

P= �
M∈𝔐

PMM

with coefficients PM in𝕂 and finite support

supp P≔{M∈𝔐:PM≠0}.
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Given a total ordering≺ on𝔐, the support of any non-zero polynomial P admits a unique
maximal element lm≺(P)∈𝔐 that is called the leadingmonomial of P; the corresponding
coefficient lc≺(P)=Plm(P)∈𝕂 is called the leading coefficient of P. A total ordering ≺
on𝔐 is said to be admissible if

M |N ⟹ M≼N and M≼N ⟹ xiM≼xiN

for all monomialsM,N∈𝔐 and i∈{1,...,n}. In particular, the lexicographical ordering≺lex
defined by

x1
e1 ⋅ ⋅ ⋅ xnen≺lexx1

f1 ⋅ ⋅ ⋅ xn
fn ⟺

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{ e1< f1 or
e1= f1∧ e2< f2 or
⋅⋅⋅
e1= f1∧ ⋅ ⋅ ⋅ ∧ en−1= fn−1∧ en< fn

is admissible.

3.3. Minimal polynomials
In the rest of the paper, an admissible weight will be a n-tuple

𝒘=(w1, . . . ,wn)∈{2i : i∈ℤ}n

with
w1 ⋅ ⋅ ⋅wn=1. (3.1)

Given a monomial x1
e1 ⋅ ⋅ ⋅ xnen, we define its 𝒘-degree by

deg𝒘(x1e1 ⋅ ⋅ ⋅ xnen)≔w1 e1+ ⋅ ⋅ ⋅ +wn en.

For a non-zero polynomial P=∑M∈𝔐 PMM∈𝕂[x1, . . . ,xn], we define its 𝒘-degree by

deg𝒘 P≔max
M∈𝔐

{deg𝒘M :PM≠0}.

We also define the ordering ≺𝒘 on𝔐 by

M≺𝒘N ⟺ (deg𝒘M<deg𝒘N)∨(deg𝒘M=deg𝒘N∧M≺lexN).

It is easy to check that ≺𝒘 is an admissible ordering. Given an admissible weight 𝒘,
there exists a unique non-zero polynomial B𝒘 in the reduced Gröbner basis of I whose
leading monomial is minimal for ≺𝒘 and whose leading coefficient is one. We call B𝒘
thew-simplest element of I. Note that there are at mostN monomials below the leading
monomial of B𝒘 for ≺𝒘. From [17, Corollary 1], we know that

degxi B𝒘⩽
n! (N+1)n�

wi
, (3.2)

for i=1, . . . ,n. The main aim of this section is an efficient algorithm for the computation
of B𝒘. For this purpose, we may assume without loss of generality that we ordered the
coordinates such thatw1⩽⋅⋅⋅⩽wn. By (3.1), this yieldsw1⩽1⩽w2 ⋅⋅⋅wn. Using also (3.2),
we get

�
2⩽i⩽n

degxi B𝒘⩽ 1
w2 ⋅ ⋅ ⋅wn

�
2⩽i⩽n

n! (N+1)n� ⩽(n! (N+1))(n−1)/n.

It follows that the set

ℬ≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{x2e2 ⋅ ⋅ ⋅ xnen : 0⩽ ei⩽
n! (N+1)n�

wi
, i=2, . . . ,n}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
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of monomials in x2, . . . ,xn has cardinality

r⩽2n−1(n! (N+1))(n−1)/n=O((N+1)(n−1)/n). (3.3)

We sort the monomials of ℬ according to the ordering ≺ℬ for which

x2e2 ⋅ ⋅ ⋅ xnen≺ℬx2
f2 ⋅ ⋅ ⋅ xn

fn

if and only if
x1
e1 ⋅ ⋅ ⋅ xnen≺lexx1

f1 ⋅ ⋅ ⋅ xn
fn,

where

e1 ≔ 0
f1 ≔ w1

−1(w2 e2+ ⋅ ⋅ ⋅ +wn en− (w2 f2+ ⋅ ⋅ ⋅ +wn fn)).

For this choice of e1 and f1, we note that
w1 e1+ ⋅ ⋅ ⋅ +wn en=w1 f1+ ⋅ ⋅ ⋅ +wn fn.

Let
b1≺ℬb2≺ℬ ⋅ ⋅ ⋅ ≺ℬbr

denote the monomials of ℬ in increasing order.
As in the previous sections, the sequence of points 𝜶 will be split into subsequences

𝜶1, . . . , 𝜶L of cardinality ⩽M such that M⩽N and LM=O(N). More precisely, until sec-
tion 3.6, we take

M≔⌊N1/n⌋ and L≔⌈N/M⌉, (3.4)
so that L=O(N (n−1)/n).

LEMMA 3.3. Let M and L be as in (3.4) and assume that x1, . . . ,xn are joined separating forms
for 𝜶1, . . . , 𝜶L. Then we can compute B𝒘 using

Õ(N1+(𝜔−1)(n−1)/n)
operations in 𝕂.

Proof. Without loss of generality, we may order the coordinates such that w1⩽ ⋅ ⋅ ⋅ ⩽
wn, after which we may use the above notation. We write 𝕂[x1][x2, . . . ,xn]ℬ for the set
of polynomials over 𝕂[x1] with support in ℬ. Let U be the Popov form of the matrix
representing the kernel of the projection

E: 𝕂[x1][x2, . . . ,xn]ℬ ⟶ 𝕂[x1, . . . ,xn]/I
P ⟼ Pmod I

in the basis b1, . . . ,br and for the shift vector
𝒔≔(s1, . . . , sr),

where si≔w1
−1deg𝒘(bi)∈ℕ. Regarding B𝒘 also as a 𝕂[x1]-vector in 𝕂[x1][x2, . . . ,xn]ℬ,

we have
deg𝒘 B𝒘=w1deg𝒔 B𝒘. (3.5)

Since 𝕂[x1] is principal, ker E is a free 𝕂[x1]-module. Let 𝜒(x1) be the minimal polyno-
mial of x1 in I. Since 𝜒(x1) b1, . . . , 𝜒(x1) br is a free family of ker E, the rank of ker E is r.
Consequently, U is a non-singular r× r matrix.
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Every row Ui of U with i = 1, . . . , r can also be regarded as a polynomial in
𝕂[x1][x2, . . . ,xn]ℬ, which belongs to I. We have

deg𝒘Ui=w1deg𝒔Ui. (3.6)

By construction, there exist a1, . . . ,ar in𝕂[x1] such that

B𝒘=a1U1+ ⋅ ⋅ ⋅ +arUr.

By Lemma 3.1, (3.5), and (3.6), we have

deg𝒘 B𝒘= max
i=1, . . . ,r

(deg𝒘Ui+w1deg ai).

Let 𝒮 be the set of row indices i such that deg𝒘Ui is minimal, that is

𝒮≔�i∈{1, . . . , r} :deg𝒘Ui= min
j=1, . . . ,r

deg𝒘Uj�.

By the minimality of B𝒘 and since the Ui belong to I, the polynomials ai with i∉𝒮 must
be zero and the others must be in 𝕂. Consequently, B𝒘=∑i∈𝒮 aiUj. By definition (see
section 3.1), the pivot index of

Ui(x1, . . . ,xn)= �
1⩽ j⩽r

Ui, j(x1)bj

is i. This means that
deg𝒘Ui(x1, . . . ,xn)=deg𝒘(Ui,i(x1)bi)

and
deg𝒘(Ui, j(x1)bj)<deg𝒘(Ui,i(x1)bi)

for all j> i. If j< i is such that deg𝒘(Ui, j(x1)bj)=deg𝒘(Ui,i(x1)bi), then the definition of
the ordering ≺ℬ ensures that bj≺lexx1

f1 bi, where f1≔w1
−1 (deg𝒘 bj−deg𝒘 bi). It follows

that f1=degUi,i(x1)−degUi, j(x1), whence x1
degUi, j(x1) bj≺𝒘 x1

degUi,i(x1) bi. In other words,
the leading monomial of Ui for ≺𝒘 is the leading monomial of Ui,i(x1)bi. Consequently,
the leadingmonomial of B𝒘 is the leadingmonomial ofUj, jbj, where j≔max{i∈𝒮:ai≠0}.
Finally, the minimality of B𝒘 implies that B𝒘 is 𝕂-proportional to Umin𝒮.

In order to obtain the Popup form U, we first compute the univariate representa-
tions of 𝜶j for j=1, . . . ,L: this takes Õ(N) operations in 𝕂 by Lemma 2.2. The univariate
representation of 𝜶j is given by a monic polynomial 𝜒j∈𝕂[x1] of degree ⩽|𝜶j| ⩽M and
polynomials vj,2, . . . ,vj,n∈𝕂[x1] of degrees <M. Now consider the matrix F∈𝕂[x1]r×L
defined by

Fi, j≔bi(vj,2, . . . ,vj,n)mod 𝜒j

for i=1,...,r and j=1,...,L: the entries Fi, j can be computed in softly linear time Õ(rLM)=
Õ(rN). Since (3.3) and (3.4) imply r=O(L), wemay apply Proposition 3.2. We conclude
that U can be computed using

Õ(r𝜔−1N)= Õ((N (n−1)/n)𝜔−1N)= Õ(N1+(𝜔−1)(n−1)/n).
operations in𝕂. □

3.4. Heterogeneous bases
Given D⩾N, we define

𝛀D≔{(2e1, . . . , 2en) : (e1, . . . , en)∈ℤn, e1+ ⋅ ⋅ ⋅ + en=0,2|e1|⩽D, . . . , 2|en|⩽D}.
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Given a finite subset S⊆ {1, . . . , n}, we write 𝛿iS≔1 if i∈ S and 𝛿iS≔0 otherwise. We
introduce

𝜋|S: 𝕂n → 𝕂n

(x1, . . . ,xn) ↦ (𝛿1Sx1, . . . , 𝛿nSxn).

We denote by 𝜶|S the image of 𝜶 under 𝜋|S and we define

𝔐|S ≔ {x1e1 ⋅ ⋅ ⋅ xnen∈𝔐: i∉S⟹ ei=0}
𝕂[x1, . . . ,xn]|S ≔ {P∈𝕂[x1, . . . ,xn] : supp P⊆𝔐|S}

I|S ≔ I∩𝕂[x1, . . . ,xn]|S.

Given a general weight𝒘∈(ℝ>)n and a subset E⊆{1, . . . ,n} such that wi=1 for all i∈E,
we define 𝒘\E∈(ℝ>∪{⊥})n to be the weight 𝒘′ with wi′=wi if i∉E and wi′=⊥ if i∈E.
If 𝒘 is admissible, then we note that 𝒘\E is again admissible for 𝕂[x1, . . . , xn]|S where
S≔{1, . . . ,n}∖E. We further let

𝛀D
# ≔ {𝒘\E :𝒘∈𝛀D,E⊆{1, . . . ,n}, (∀i∈E,wi=1)}.

The family of simplest polynomials (B𝒘)𝒘∈𝛀D
# is called an heterogenous basis for 𝜶

and D.

LEMMA 3.4. Let M and L be as in (3.4) and assume that x1, . . . ,xn are joined separating forms
for 𝜶1, . . . , 𝜶L. Then a heterogenous basis (B𝒘)𝒘∈𝛀D

# can be computed using

Õ(N1+(𝜔−1)(n−1)/n logn−1D)
operations in 𝕂.

Proof. The cost for computing a single B𝒘 is given in Lemma 3.3. On the other hand, we
have card𝛀D

# ⩽2ncard𝛀D, and card𝛀D=O(logn−1D) by [17, Lemma 2]. □

Let M and L are still as in (3.4). Assume that N is a power 2ℓ. A recursive heteroge-
neous basis for 𝜶 and D consists of the following data:
• a heterogenous basis for 𝜶 and D,
• for all m=1, 2, . . . , 2ℓ−1 and i=0, . . . ,N/m− 1, a heterogeneous basis for 𝜶im+1,m≔

(𝛼im+1, . . . , 𝛼im+m)∈(𝕂n)m and Dm≔4nn! (2m+1).
We say that linearly independent linear forms u1,...,unweakly separate 𝜶 if each of them
is a joined separating form for 𝜶1, . . .,𝜶L. We say that they recursively weakly separate 𝜶
if they weakly separate each of the above 𝜶im+1,m form=1,2,...,2ℓ−1 and i=0,...,N/m−1.

In order to construct recursive heterogeneous bases, we need coordinates x1, . . . ,xn
that recursively weakly separate 𝜶. This is the purpose of the following lemma.

LEMMA 3.5. Assume that we are given (ℓ+1)N1+1/n+1 points in𝕂. A basis u1,...,un of linear
forms that recursively weakly separate 𝜶 can be computed using Õ(N1+1/n) operations in 𝕂.

Proof. With M and L as in (3.4) we have

L�M2 �⩽�N
M +1��M2 �=

1
2 (N+M)(M−1)⩽ 1

2 (N+N1/n)N1/n⩽N1+1/n. (3.7)

Let us call 𝜶1, . . . , 𝜶L the standard split of 𝜶. We construct the sequence of sequences of
points 𝜷 that consists of the standard split of 𝜶 and the standard splits of 𝜶im+1,m form=1,
2, . . . , 2ℓ−1 and i=0, . . . ,N/m−1.
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Let Mm≔⌊m1/n⌋. The standard split of 𝜶im+1,m consists of Lm≔⌈m/Mm⌉ sequences
of cardinality ⩽Mm. The total number of points in 𝜷 is at most (ℓ+1)N=O(N logN).
Using (3.7), we verify that

�
𝜸∈𝜷

�|𝜸|2 � ⩽ L�M2 �+ �
m=1,2, . . . ,2ℓ−1

�
0⩽i<N/m

Lm�
Mm
2 �

⩽ N1+1/n+ ℓ Nm m1+1/n

⩽ (ℓ+1)N1+1/n.

By Lemma 2.1, we may compute a joined separating form u1=x1+𝜆2x2+⋅⋅⋅+𝜆nxn for 𝜷,
in time O((ℓ+1)N1+1/n)= Õ(N1+1/n), using the given subset of 𝕂. For j=2, . . . ,n, we
take uj≔xj+𝜆j′ u1 for some 𝜆j′ in𝕂 such that

𝜆j′ ≠− xj(b)−xj(a)
u1(b)−u1(a)

for all distinct points a, b∈𝕂n in 𝜸, for all 𝜸 in 𝜷. Since 𝜆j′ must be different from
⩽(ℓ +1)N1+1/n elements in 𝕂, a suitable 𝜆j′ can be found in the given subset of 𝕂. In
this way, ui is a joined separating form for 𝜷.

By construction, u1, . . . , un are 𝕂-linearly independent. The evaluation of u1 at all
points a∈𝕂n in 𝜷 takesO(N logN) operations in𝕂. For each j=2,...,n, the set of unsuit-
able values for 𝜆j′ can be computed using O(N1+1/n logN) operations in𝕂. □

LEMMA 3.6. Assume that x1,...,xn recursively weakly separate 𝜶. Then a recursive heterogeneous
basis for 𝜶 and D⩾N can be computed using

Õ(N1+(𝜔−1)(n−1)/n logn−1D)
operations in 𝕂.

Proof. This is a direct consequence of Lemma 3.4; recall that n is fixed. □

3.5. Amortized evaluation
We gather the preceding results of this section into the following statement.

LEMMA 3.7. Let d∈ℕ and D≔(d+1)n. Assume that N⩽D is a power 2ℓ, and that we are given
and element of order

⩾max((ℓ+1)N1+1/n+1,d+1,4nn! (D+1))

in𝕂. Then we can compute an invertible n×n matrix U over 𝕂 such that x1, . . . ,xn recursively
weakly separate U(𝜶), together with a recursive heterogeneous basis for U(𝜶) and D, using

Õ(N1+(𝜔−1)(n−1)/n logn−1 d)

operations in 𝕂. Having computed such a basis, any polynomial P of total degree ⩽d can be
evaluated at 𝜶 using Õ(D) operations in 𝕂.

Proof. The case n=1 is well-known; see [9, chapter 10]. So let us assume n⩾2. The com-
putation ofU and of the recursive heterogeneous basis has been addressed in Lemmas 3.5
(using the element of order >(ℓ+1)N1+1/n) and 3.6.
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Given P and U, the computation of the polynomial P ∘U−1 takes Õ(dn) operations
in 𝕂 thanks to [16, Appendix A, Proposition A.5] and the element of order >d. By [17,
Theorem 5], P ∘U−1 can be evaluated at U(𝜶) using Õ(SM(D)) operations in 𝕂. Here
SM(s) is a cost function for multiplying two sparse polynomials P andQ in𝕂[x1, . . .,xn],
where s is the maximum of the sizes of the supports of P, Q, and PQ. As detailed in
the proof of [17, Theorem 1], we may take SM(D) = Õ(D), thanks to the element of
order ⩾4nn! (D+1). □

THEOREM 3.8. Let n⩾1 be a fixed dimension, let 𝜶∈(𝕂n)N and d∈ℕ be such that N=O(dn).
After the precomputation of suitable data, as a function of 𝜶 and d only, any polynomial P of total
degree ⩽d can be evaluated at 𝜶 using

Õ(dn)

operations in 𝕂. Moreover, the precomputation can be done using

Õ(N1+(𝜔−1)(n−1)/n)(log d)O(1)

operations in 𝕂.

Proof. Let D≔ (d+ 1)n. We first handle the case where 2N⩽D. In this way, up to
repeating some points in 𝜶, we may assume that N is a power of two such that N⩽D.

If we are given an element of order ⩾max((ℓ+1)N1+1/n+1,d+1,4nn! (D+1)), then
the complexity bounds follow from Lemma 3.7. Otherwise, we may appeal to Proposi-
tion A.2 to ensure the existence of this element of high order. In this way, note that the
precomputed data are in general defined over an extension of the form𝕂[z]/(𝜇(z)), and
that P must then be evaluated over this extension, following the rules described in the
proof of Proposition A.2.

Finally, if 2N >D then we subdivide 𝜶 into O(N /D)=O(1) subsequences of
size ⩽⌊D/2⌋, and then repeat the precomputations and the evaluations for each sub-
sequence. □

3.6. Non-amortized evaluation
Using the preceding amortized evaluation strategy, we analyze the cost of a single multi-
point evaluation in n variables as a function of N.

THEOREM 3.9. Let n⩾1 be a fixed dimension. A polynomial P∈𝕂[x1, . . .,xn] of total degree⩽d
can be evaluated at N=(dn)𝜃 points in 𝕂n using Õ((N+dn)𝜇n(𝜃)) operations in 𝕂, where

𝜇n(𝜃)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{
{ 1 if 𝜃⩽ n

(n−1)𝜔+1

𝜃+1− n
(n−1)𝜔+1 if n

(n−1)𝜔+1 ⩽𝜃⩽1

1+�1− n
(n−1)𝜔+1�

1
𝜃 if 1⩽𝜃.

Proof. We start with the case 𝜃⩽1. We subdivide 𝜶 into subsequences 𝜶1, . . . , 𝜶L of cardi-
nality ⩽M, where M⩽N and LM=O(N). The evaluations of P at 𝜶i for i=1, . . . ,L take

Õ((dn+M1+(𝜔−1)(n−1)/n)L)= Õ((dn+M((n−1)𝜔+1)/n)L) (3.8)

operations in𝕂 by Theorem 3.8. We distinguish the following cases:
• If N ((n−1)𝜔+1)/n⩽dn, then we set M≔N and L≔1, so the cost (3.8) is at most Õ(dn).
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1

2− 2
𝜔+1

10 𝜃2
𝜔+1

3
4

𝜇2(𝜃)

𝜂2(𝜃)

Figure 3.1. Complexity exponent 𝜇2(𝜃) for bivariate evaluation in degree d at d2𝜃 points via The-
orem 3.9. For comparison, we also show the complexity exponent 𝜂2(𝜃) from Theorem 2.8.

• Otherwise we take

M≔�d
n2

(n−1)𝜔+1�

and L≔⌈N/M⌉, so the cost (3.8) simplifies into

Õ�dn�N
M +1��= Õ�Ndn−

n2

(n−1)𝜔+1 +dn�= Õ�Ndn−
n2

(n−1)𝜔+1�.

Finally, if N> dn then we subdivide 𝜶 into O(N/dn) subsequences of size ⩽dn, so the
evaluation cost becomes

Õ((dn)𝜇n(1)N/dn)= Õ(N1+(𝜇n(1)−1)/𝜃). □

Remark 3.10. If n=2 and 𝜔<3, then Theorem 3.9 always improves on Theorem 2.7.

Remark 3.11. We have plotted the complexity exponent 𝜇2(𝜃) for bivariate multi-point
evaluation in Figure 3.1. Comparing with Theorem 2.8, while assuming that 𝜔<3, we
observe that
• 𝜇2(𝜃)=𝜂2(𝜃) if 𝜃⩽1/2,
• 𝜇2(𝜃)<𝜂2(𝜃) if 1/2<𝜃<𝜃c,
• 𝜇2(𝜃)⩾𝜂2(𝜃) if 𝜃c⩽𝜃, where 𝜃c≔

𝜔+2
2(𝜔+1) <

3
4 .

Remark 3.12. Comparing with Theorem 2.6, the complexity exponents 𝜂n(1) and 𝜇n(1)
tend to (𝜔+1)/2 and 2−1/𝜔 respectively, when n tends to infinity. If 𝜔>2, then our
new bound improves on the Nüsken–Ziegler algorithm for large n. More precisely, we
have

𝜂n(1)−𝛾n(1)=
(𝜔−1)((𝜔−2)n+1−𝜔)(n−1)

2n((n−1)𝜔+1) ,

so our method is faster when

n>𝜔−1
𝜔−2.
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3.7. Three or more variables
As in section 2.3, let us now analyze the variant whenwe apply the amortized evaluation
method for n−1 variables to the non-amortized problem for n variables.

THEOREM 3.13. Let n⩾3 be a fixed dimension. A polynomial P∈𝕂[x1,...,xn] of total degree⩽d
can be evaluated at N=(dn)𝜃 points in 𝕂n using Õ((N+dn)𝜅n(𝜃)) operations in 𝕂, where

𝜅n(𝜃)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{
{ 1 if 𝜃⩽ n−1

(n−2)𝜔+1

𝜃+ (𝜔−1)(n−2)
(n−2)𝜔+1 if n−1

(n−2)𝜔+1 ⩽𝜃⩽1

1+ (𝜔−1)(n−2)
(n−2)𝜔+1

1
𝜃 if 1⩽𝜃.

Proof. Again, we subdivide 𝜶 into subsequences 𝜶1, . . . , 𝜶L of cardinality ⩽M such that
M=O(dn−1). We expand P as a polynomial in xn,

P(x1, . . . ,xn)= �
0⩽i⩽d

Pi(x1, . . . ,xn−1)xni ,

and let 𝜋:𝕂n→𝕂n−1 denote the projection (x1, . . . ,xn)↦(x1, . . . ,xn−1).
We apply Theorem 3.8 successively with 𝜋(𝜶1), . . . , 𝜋(𝜶L) in the role of 𝜶. The total

cost of the precomputations is

Õ(LM1+(𝜔−1)(n−2)/(n−1))(log d)O(1),

after which the cost of the evaluations of P0, . . . ,Pd at 𝜋(𝜶) becomes

Õ(Ldn).
We deduce P(𝜶) in time O(dN). Now we set

M≔⌈(dn)1/(1+(𝜔−1)(n−2)/(n−1))⌉ and L≔⌈N/M⌉.

Using n⩾3, we verify that M=O(dn−1). In total, the computation of P(𝜶) costs

Õ(L(M1+(𝜔−1)(n−2)/(n−1)+dn)+dN)
= Õ(Ldn+dN)
= Õ((N/M+1)dn+dN)
= Õ(Ndn−n/(1+(𝜔−1)(n−2)/(n−1))+dn+dN)
= Õ(Ndn(𝜔−1)(n−2)/((n−2)𝜔+1)+dn+dN).

Still using n⩾3, we note that
n(𝜔−1)(n−2)
(n−2)𝜔+1 −1= (n−1)((n−2)𝜔−n+1)

(n−2)𝜔+1 ⩾0.

Consequently, the total cost simplifies to Õ(Ndn(𝜔−1)(n−2)/((n−2)𝜔+1)+dn). □

Remark 3.14. Since the map t↦ t
(t−1)𝜔+1 is decreasing for t⩾1, we have

n
(n−1)𝜔+1 <

n−1
(n−2)𝜔+1.

If n−1
(n−2)𝜔+1 ⩽𝜃⩽1, then

𝜇n(𝜃)−𝜅n(𝜃) = 𝜔−1
((n−2)𝜔+1)((n−1)𝜔+1) >0.
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𝜔+1

Figure 3.2. Complexity exponent 𝜅3(𝜃) for the evaluation of a polynomial in three variables of
degree d at d3𝜃 points via Theorem3.13.

Consequently, if n⩾3, then Theorem 3.13 always improves upon Theorem 3.9.

Remark 3.15. The function 𝜅3(𝜃) from Theorem 3.13 is plotted in Figure 3.2. In com-
parison with Theorem 2.6, we note that 𝜅3(1)=𝜂3(1) at the limit when 𝜔=2. However,
for the best currently known upper bound for 𝜔, we have 𝜅3(𝜃)<𝜂3(𝜃) for all 𝜃>1/3,
even when taking into account Remark 2.4. More precisely, for 𝜔≈2.371552, we have
𝜅3(1)≈1.406801. At the same time, for𝜔2≈3.250385, the exponent of theNüsken–Ziegler
algorithm is (𝜔2+1)/3≈1.416795.

Remark 3.16. For 𝜃 = 1, it is instructive to compare Theorem 3.13 with the best
Nüsken–Ziegler style complexity bound Õ(d(n−1)(𝜔2/2)+1) of Remark 2.4:
• If 𝜔=3 and 𝜔2=4, then the bound from Theorem 3.13 is always better.
• For the best currently known values𝜔≈2.371552 and𝜔2≈3.250385, we verify numer-

ically that

1+ (𝜔−1)(n−2)
(n−2)𝜔+1 =𝜅n(1)<

(n−1)(𝜔2/2)+1
n

if and only if n=3 or n⩾7.
• At the limit when 𝜔= 2 and 𝜔2= 3, we have 𝜂3(1) = 𝜅3(1) = /4 3 and 𝜂n(1) < 𝜅n(1)

for n>3.

APPENDIX A. ELEMENTS OF LARGE ORDER

Let 𝕂 be an effective field, and let 𝕂×≔𝕂∖{0} denote its multiplicative group. We are
interested in finding elements of𝕂× of a sufficiently high order, possibly after replacing𝕂
by a suitable extension. The following algorithm finds such elements whenever the car-
dinality of 𝕂 is sufficiently large.

Algorithm A.1
Input. A subset 𝒮 of 𝕂× of cardinality N⩾1.
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Output. An element of 𝕂× of order ⩾N.

1. Set g≔1, m≔1, and ℓ≔⌊log2N⌋.
2. For each element a in 𝒮 do:

a. If am=1 then continue the loop of step 2 with the next element in 𝒮.
b. Compute ai for i=2, . . . ,N−1.
c. If the order e of a is ⩾N, then return a.
d. Compute d≔gcd (m, e), ẽ≔gcd (e, (e/d)ℓ), m̃≔m/gcd (m, (e/d)ℓ), ã≔ ae/ẽ,

and g̃≔ gm/m̃.
e. Compute the integers u and v of the Bézout relation 1= u m̃+ v ẽ. Replace g
by g̃u ãv and m by m̃ ẽ.

f. If m⩾N then return g.

PROPOSITION A.1. Algorithm A.1 is correct and performs O(N logN) operations in 𝕂.

Proof. Let 𝒢 denote the current subset of the elements of 𝒮 that have been handled
when entering step 2.a. We will show by induction that the elements of 𝒢 have order
dividing m, and that g has order m. Of course, these properties hold at the beginning,
when 𝒢 is empty.

If am=1 then the induction hypothesis is preserved. If the algorithm exits at step 2.c,
then the output is clearly correct. Otherwise, the order e⩽N−1 of a can be read off from
the computations of step 2.b.

Let p1, . . . ,ps be the prime numbers occurring in the factorization of me, of respective
multiplicities e1, . . . , es in e and m1, . . . ,ms in m, so we have

e=p1
e1 ⋅ ⋅ ⋅ pses and m=p1

m1 ⋅ ⋅ ⋅ psms.

Some of the ei or mi may be zero here. Since e and m are at most N, the ei and mi are at
most ℓ. From

d=gcd(e,m)= �
1⩽i⩽s

pi
min(ei,mi),

and since e does not divide m, we note that the integer

e/d= �
1⩽i⩽s

pi
ei−min(ei,mi)

is at least ⩾2 and only divisible by the primes pi such that ei>mi. It follows that

ẽ= �
1⩽i⩽s
ei>mi

piei, gcd(m, (e/d)ℓ)= �
1⩽i⩽s
ei>mi

pimi, m̃= �
1⩽i⩽s
ei⩽mi

pimi,

hence m̃ and ẽ are coprime and
m̃ ẽ=m �

1⩽i⩽s
ei>mi

piei−mi⩾2m.

Now g̃ has order m̃ and ã has order ẽ, whence (g̃v ãu)m̃ẽ=1. If p is a prime divisor of m̃,
then

(g̃v ãu)(m̃ẽ)/p= g̃vẽ(m̃/p)= g̃(1−um̃)(m̃/p)= g̃(m̃/p)≠1.
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Similarly, if p is a prime divisor of ẽ, then (g̃v ãu)(m̃ẽ)/p≠1. Consequently, g̃v ãu has order m̃ ẽ.
In particular, if the algorithm exits in step 2.f, then the output is correct. From

m̃ ẽ=m �
1⩽i⩽s
ei>mi

piei−mi= �
1⩽i⩽s
ei⩽mi

pimi �
1⩽i⩽s
ei>mi

piei

we note that e and m divide m̃ ẽ. Therefore the induction hypothesis again holds at the
end of step 2.

Since the orders of the elements of 𝒢 dividem, they are roots of the polynomial xm−1,
whence �𝒢�⩽m. This shows that the algorithm works as expected.

Steps 2.a, 2.d, and 2.e takeO(logN) operations in𝕂. Step 2.b takesO(N) operations.
In step 2.e, the integer m is at least doubled, so step 2.b can occur only O(logN) times.
Overall, the total cost is O(N logN). We finally observe that the gcds and the Bézout
relations can be computed using a negligible number of Õ((logN)2) bit operations. In
order to be painstakingly precise, we note that such bit operations can be emulated by
operations over𝕂 in our algebraic complexity model. □

In many usual cases, it is known that Algorithm A.1 is suboptimal. In particular, if
the characteristic of𝕂 is zero, then 2 has always order⩾N. If𝕂=𝔽q is a finite field, then
𝕂× is cyclic and primitive elements can be obtained more efficiently; see [8, 28, 29] for
instance, but also the survey [7]. As an advantage, Algorithm A.1 is field agnostic. This
property seems mostly of theoretical interest, but it turns out to be useful when pro-
gramming generic algorithms, that do not require specific properties of 𝕂: for instance
the characteristic or the cardinality of 𝕂 are not computable. The following proposition
explains how to use Algorithm A.1 even without any piece of information about 𝕂.

PROPOSITION A.2. Let T be a computation tree of total cost L over 𝕂, such that
• One of the input values of T must contain an element 𝜁 of order ⩾N;
• The output values of T are independent of the value taken for 𝜁, even when 𝜁 is taken in an

algebraic extension 𝔼 of 𝕂 and when T is evaluated over 𝔼.
Then there exists a computation tree T′ of total cost

O(LM(logN) log logN+N logN)

that computes the same as T but without requiring an input element of order ⩾N.

Proof. We are interested in computing an element of order ⩾N. First, we can compute
the sequence of integers 1,2,...,N in𝕂 usingO(N) additions, and then determinewhether
char 𝕂 is >N or not. If char 𝕂>N, then we can use Algorithm A.1 in order to obtain
an element 𝜁 of 𝕂 of order ⩾N. In this case, T′ simply runs T with 𝜁 .

Otherwise, p≔char𝕂⩽N. We shall compute in a sufficiently large algebraic exten-
sion of 𝕂 as follows. Let e≔⌈log(N+1)/log p⌉ be the first integer such that

pe−1⩾N.

Thanks to [27, Theorem 3.2], we may deterministically construct a monic irreducible
polynomial 𝜇(z)∈𝔽p[z] of degree e in𝔽p[z] using Õ(p1/2)eO(1)=O(N) operations in𝕂. In
this way, 𝔽p[z]/(𝜇(z)) is the finite field with pe elements. We can enumerateN non-zero
elements of 𝔽p[z]/(𝜇(z)) and then use Algorithm A.1 in order to obtain an element 𝜁
of 𝔽p[z]/(𝜇(z)) of order ⩾N. We regard 𝜁(z) as a polynomial in𝕂[z] of degree <e.
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Now we regard T as a computation tree over 𝕂[z]/(𝜇(z)), using 𝜁 in place of the
input element of order ⩾N. While executing T for given input in𝕂, sums and products
can be lifted straightforwardly to𝕂[z]/(𝜇(z)): elements of𝕂[z]/(𝜇(z)) are represented
by polynomials of degree <e. When testing whether an element

a(z)∈𝕂[z]/(𝜇(z))

is invertible or not, we proceed as follows:
• If a(z) is identically zero, then the test returns false.
• If a(z) is invertible modulo 𝜇(z), then the test returns true.
• Otherwise, 𝜇 can be factored 𝜇=𝜇1𝜇2, with 𝜇1≔gcd(𝜇,a), deg 𝜇1⩾1, and deg 𝜇2⩾1.

We continue our computations with 𝜇1 in the role of 𝜇, while projecting all previously
computed results from 𝕂[z]/(𝜇(z)) in 𝕂[z]/(𝜇1(z)). In particular, a(z) becomes
identically zero after this projection, and the test returns false.

Note that𝔽q remains embedded in𝕂[z]/(𝜇(z))whenever 𝜇 is replaced by any non-trivial
factor over 𝕂. In particular, the order of 𝜁 remains ⩾N after any such replacement. At
the end, we thus obtain the evaluation of T over 𝕂[z]/(𝜇∗(z)), where 𝜇∗ is a non-con-
stant factor of the original 𝜇. This proves the correctness of our method.

Computing 𝜁 takes O(N log N) operations thanks to Proposition A.1. The evalua-
tion of T over 𝕂[z]/(𝜇(z)) requires L ring operations or extended gcd computations
for polynomials over 𝕂 of degree at most e. This contributes O(LM(e) log e)=
O(LM(logN) log logN) to the cost. The overall cost is therefore as claimed. □

BIBLIOGRAPHY

[1] S. Abelard, A. Couvreur, and G. Lecerf. Efficient computation of Riemann–Roch spaces for plane
curves with ordinary singularities. Appl. Algebra Eng. Commun. Comput., 35(6):739–804, 2024.

[2] V. Bhargava, S. Ghosh, Z. Guo, M. Kumar, and C. Umans. Fast multivariate multipoint evaluation
over all finite fields. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 221–232. New York, NY, USA., 2022. IEEE.

[3] V. Bhargava, S. Ghosh, M. Kumar, and C. K. Mohapatra. Fast, algebraic multivariate multipoint eval-
uation in small characteristic and applications. J. ACM, 2023. Article 42.

[4] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In Proceedings of the 2003 Interna-
tional Symposium on Symbolic and Algebraic Computation, ISSAC '03, pages 37–44. New York, NY, USA,
2003. ACM.

[5] P. Bürgisser,M. Clausen, andM. A. Shokrollahi. Algebraic Complexity Theory, volume 315 ofGrundlehren
der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[6] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Inform., 28:693–701, 1991.

[7] Q. Cheng. On the construction of finite field elements of large order. Finite Fields their Appl.,
11(3):358–366, 2005.

[8] S. Gao. Elements of provable high orders in finite fields. Proc. Am. Math. Soc., 127(6):1615–1623, 1999.
[9] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York,

3rd edition, 2013.
[10] D. Harvey and J. van der Hoeven. Faster polynomial multiplication over finite fields using cyclotomic

coefficient rings. J. Complexity, 54:101404, 2019.
[11] J. van der Hoeven. The Jolly Writer. Your Guide to GNU TeXmacs. Scypress, 2020.
[12] J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect to sufficiently

regular Gröbner bases. In C. Arreche, editor, Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation, ISSAC '18, pages 199–206. New York, NY, USA, 2018. ACM.

[13] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited. J. Complexity,
56:101405, 2020.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 23



[14] J. van der Hoeven and G. Lecerf. Amortized bivariate multi-point evaluation. In M. Mezzarobba,
editor, Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ISSAC '21,
pages 179–185. New York, NY, USA, 2021. ACM.

[15] J. van der Hoeven andG. Lecerf. Fast amortizedmulti-point evaluation. J. Complexity, 67:101574, 2021.
[16] J. van der Hoeven and G. Lecerf. On the complexity exponent of polynomial system solving. Found.

Comput. Math., 21:1–57, 2021.
[17] J. van der Hoeven and G. Lecerf. Amortized multi-point evaluation of multivariate polynomials.

J. Complexity, 74:101693, 2022.
[18] J. van der Hoeven, G. Lecerf, B. Mourrain et al. Mathemagix. 2002. http://www.mathemagix.org.
[19] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. Appl. Alg. Eng. Comm.

Comp., 24(1):37–52, 2013.
[20] K. S. Kedlaya andC. Umans. Fast polynomial factorization andmodular composition. SIAM J. Comput.,

40(6):1767–1802, 2011.
[21] D. Le Brigand and J.-J. Risler. Algorithme de Brill–Noether et codes de Goppa. Bulletin de la société

mathématique de France, 116(2):231–253, 1988.
[22] V. Neiger. Bases of relations in one or several variables: fast algorithms and applications. PhD thesis,

École Normale Supérieure de Lyon (France) – University of Waterloo (Canada), 2016. https://
tel.archives-ouvertes.fr/tel-01431413.

[23] V. Neiger. Fast computation of shifted Popov forms of polynomial matrices via systems of modular
polynomial equations. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC '16, pages 365–372. New York, NY, USA, 2016. ACM.

[24] V. Neiger, J. Rosenkilde, and G. Solomatov. Generic bivariate multi-point evaluation, interpolation
and modular composition with precomputation. In A. Mantzaflaris, editor, Proceedings of the 45th
International Symposium on Symbolic and Algebraic Computation, ISSAC '20, pages 388–395. New York,
NY, USA, 2020. ACM.

[25] V. Neiger, B. Salvy, É. Schost, and G. Villard. Faster modular composition. J. ACM, 71(2):1–79, 2023.
Article No. 11.

[26] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In S. Albers and
T. Radzik, editors, Algorithms – ESA 2004. 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, volume 3221 of Lect. Notes Comput. Sci., pages 544–555. Springer Berlin Heidelberg, 2004.

[27] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp.,
54(189):435–447, 1990.

[28] V. Shoup. Searching for primitive roots in finite fields. Math. Comp., 58:369–380, 1992.
[29] I. Shparlinski. On finding primitive roots in finite fields. Theor. Comput. Sci., 157(2):273–275, 1996.
[30] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou. New bounds for matrix multiplication: from alpha to

omega. In D. P. Woodruff, editor, Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3792–3835. Philadelphia, PA 19104 USA, 2024. SIAM.

24 FASTER MULTI-POINT EVALUATION OVER ANY FIELD

http://www.mathemagix.org
http://www.mathemagix.org
http://www.mathemagix.org
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413
https://tel.archives-ouvertes.fr/tel-01431413

	1. Introduction
	1.1. Main results
	1.2. Related work

	2. The Nüsken–Ziegler algorithm
	2.1. Separating forms
	2.2. Evaluation when x_1 is a separating form
	2.3. Case of at least three variables
	2.4. Bivariate case

	3. Amortized multivariate evaluation
	3.1. Shifted Popov forms
	3.2. Admissible orderings
	3.3. Minimal polynomials
	3.4. Heterogeneous bases
	3.5. Amortized evaluation
	3.6. Non-amortized evaluation
	3.7. Three or more variables

	Appendix A. Elements of large order
	Bibliography

