
TEXMACS Scheme developer guide

Table of contents

1. Overview of the Scheme extension language 9

1.1. Why TEXMACS uses Scheme as its extension language 9
1.2. When and how to use Scheme . 10

User provided initialization �les . 10
User provided plug-ins . 11
Interactive invocation of Scheme commands 12
Command-line options for executing Scheme commands 12
Invoking Scheme scrips from TEXMACS markup 13

1.3. General architecture of the Scheme API . 13
Built-in Scheme commands . 14
Extensions to Scheme and further utilities 14
Internal modules and plug-ins . 15

1.4. The module system and lazy de�nitions . 15
1.5. Contextual overloading . 17
1.6. Meta information and logical programming . 18
1.7. The TEXMACS content model . 19

Passive documents and Scheme trees . 19
Active documents and C++ trees . 19
A common framework . 20
Persistent positions inside trees . 20

1.8. Standard utilities . 20
Regular expressions . 21
Dialogues . 21
User preferences . 21
New data formats and converters . 21

2. TEXMACS extensions to Scheme and utilities 23

2.1. TEXMACS abbreviations . 23
2.2. Matching regular expressions . 23
2.3. Selection of subexpressions . 25
2.4. Logical programming extensions . 26
2.5. Function de�nition and contextual overloading . 26

Contextual overloading . 27
Other options for function and macro declarations 28

2.6. Interactive dialogues . 29
2.7. User preferences . 29
2.8. Adding converters . 30
2.9. Keyboard bindings . 30
2.10. De�ning menus . 30

3. Programming routines for editing documents 31

3.1. The TEXMACS editing model . 31

5

Document fragments . 31
Positions inside document fragments . 32
Semantic navigation and further utilities 33
A worked example . 33

3.2. Fundamental tree modi�cation routines . 35
3.3. High level modi�cation routines . 37
3.4. Path-based navigation . 38

4. TEXMACS buffer management . 39

4.1. Introduction . 39
4.2. Manipulating TEXMACS bu�ers . 39

Basic bu�er management . 39
Information associated to bu�ers . 40
Synchronizing with the external world . 41

4.3. Manipulating TEXMACS views . 41
4.4. Manipulating TEXMACS windows . 42

5. Scheme interface for the graphical mode 45

5.1. Low level graphics manipulation . 45
Rationale . 45
De�nitions . 45
Manipulation of enhanced trees . 46
Sketch manipulation . 46
Miscellaneous . 47

5.2. Graphics interface between C++ and Scheme . 47
Rationale . 47
De�nitions . 48
Coordinate transformations . 48
Grid routines . 48
Selection of shapes . 48
Computations with shapes . 49

6. Extending the graphical user interface 51

6.1. An introduction to widgets . 51
6.2. Menus and toolbars . 52
6.3. Displaying lists and trees . 53

Displaying lists with enum, choice and choices 53
Displaying trees with tree-widget . 53
Default data roles . 54
Using commands . 54
Examples . 55
An example using data roles . 55

An example using the bu�er tree . 55
An example with the side tools . 56
6.4. Dialogs and composite widgets . 56

6.4.1. Composite widgets . 57
6.5. Forms . 58

6 Table of contents

6.6. Containers, glue, refresh and co. 58
6.6.1. Attribute widgets . 58
6.6.2. Container or layout widgets . 59
6.6.3. Glue widgets . 60
6.6.4. Refresh widgets . 61

6.7. Widgets reference guide . 61

7. Writing TEXMACS bibliography styles . 65

7.1. Introduction . 65
7.2. Example of a simple bibliography style . 65
7.3. Scheme functions for writing bibliography styles 66

7.3.1. Style management . 66
7.3.2. Field related routines . 66
7.3.3. Routines for structuring the output . 67
7.3.4. Routines for textual manipulations . 67
7.3.5. Miscellaneous routines . 68

8. About the API documentation . 69

8.1. The TEXMACS �le system . 69
8.1.1. A tmfs primer . 69
8.1.2. The TEXMACS �lesystem . 69
8.1.3. Implementing a handler . 69
8.1.4. Installing the handler . 71

8.2. The URL system . 71
8.2.1. Navigation . 71
8.2.2. Predicates . 72

8.3. Noti�cation and download of updates . 72
8.3.1. Operating system speci�cs . 73
8.3.2. Client side interface . 73

8.4. All glue functions . 74

Index . 139

Table of contents 7

Chapter 1

Overview of the Scheme extension language

One major characteristic of TEXMACS is the possibility to extend the editor using the
Guile-Scheme extension language. Such extensions can be simple, like a personal boot
�le containing frequently used keyboard shortcuts, or more complex, like a plug-in with
special editing routines for a particular type of documents. The Scheme language can also
be used interactively from within the editor or invoked by special markup like �actions�.

In this chapter, we give an overview of why and how to use Scheme from within TEXMACS.
The �rst sections provide su�cient information for someone who wants to program some
basic customization of the keyboard and menus. The latter sections give an introduction
to the general architecture of the Scheme API and some important features and partic-
ularities of way Scheme is used within TEXMACS. The reading of the overview is highly
recommended to anyone who wants to make non-trivial use of Scheme inside TEXMACS.

More complete documentation about the Scheme modules provided by TEXMACS is avail-
able from the Help!Scheme extensions menu. We also recommend the following on-line
manuals about Scheme and its Guile implementation:

¡ The Scheme programming language.

¡ Guile reference manual.

For further information about Scheme, we refer to http://www.schemers.org. As a
general rule, we also encourage users to take a look at the TEXMACS source code for concrete
examples on how to use Scheme from within TEXMACS.

1.1. Why TEXMACS uses Scheme as its extension lan-
guage

At a �rst glance, the choice of Scheme as an extension language for TEXMACS may seem a
bit strange for people who are accustomed to more conventional programming languages,
such as C++, Java or Python. In particular, its heavy use of parenthesis frightens more
than one person.

Our choice of Scheme has been motivated by the fact that the language is highly �exible
in several ways:

1. It is easy to mix programs and data in a common framework.

2. It is easy to customize the language itself, by adding new programming constructs.

3. It is easy to write programs on a very abstract level.

9

http://www.scheme.com/tspl2d/index.html
http://www.scheme.com/tspl2d/index.html
http://www.scheme.com/tspl2d/index.html
http://latakia.dyndns.org/~ruhl/guile-doc/guile_toc.html
http://latakia.dyndns.org/~ruhl/guile-doc/guile_toc.html
http://latakia.dyndns.org/~ruhl/guile-doc/guile_toc.html
http://www.schemers.org
http://www.schemers.org
http://www.schemers.org

The �rst two features are very particular important for extension languages. Indeed, one
major use of extension languages is to store data for the application (like keyboard short-
cuts and menus) in an intelligent way. Furthermore, the application usually provides some
very typical features, which may need to be re�ected at the level of the extension language.

For the �rst two features, the simplicity of the parenthesized notation used by Scheme
is also an advantage. Indeed, consider the following fragment of the de�nition of the File
menu:

(menu-bind file-menu
("New" (new-buffer))
("Load" (choose-file load-buffer "Load file" ""))
("Save" (save-buffer))
...)

The entries of the menu (the data) and the corresponding actions (the programs) are very
readable using the bracket notation. Similarly, when de�ning a new language primitive,
the systematic use of the bracket notation relieves the user from the burden of making the
corresponding changes in the parser.

1.2. When and how to use Scheme

You may invoke Scheme programs from TEXMACS in di�erent ways, depending on whether
you want to customize some aspects of TEXMACS, to extend the editor with new function-
ality, to make your markup more dynamic, and so on. In this section, we list the major
ways to invoke Scheme routines.

User provided initialization �les.

In order to customize the basic aspects of TEXMACS, you may provide one or both of the
initialization �les

~/.TeXmacs/progs/my-init-texmacs.scm
~/.TeXmacs/progs/my-init-buffer.scm

The �le my-init-texmacs.scm is loaded when booting TEXMACS and my-init-buffer.scm
is booted each time you open a �le.

Usually, the �le my-init-texmacs.scm contains personal keyboard bindings and menus.
For instance, when putting the following piece of code in this �le, the keyboard shortcuts
⇧T H . and ⇧P R O P . for starting a new theorem resp. proposition:

(kbd-map
("D e f ." (make 'definition))
("L e m ." (make 'lemma))
("P r o p ." (make 'proposition))
("T h ." (make 'theorem)))

Similarly, the following command extends the standard Insert menu with a special section
for the insertion of greetings:

10 Overview of the Scheme extension language

(menu-bind insert-menu
(former)

(-> "Opening"

("Dear Sir" (insert "Dear Sir,"))
("Dear Madam" (insert "Dear Madam,")))

(-> "Closing"
("Yours sincerely" (insert "Yours sincerely,"))
("Greetings" (insert "Greetings,"))))

The customization of the keyboard and menus is described in more detail in the chapter
about the TEXMACS extensions of Scheme. Notice also that, because of the lazy loading
mechanism, you can not always assume that the standard key-bindings and menus are
loaded before my-init-texmacs.scm. This implies that some care is needed in the case of
rede�nitions.

The �le my-init-buffer.scm can for instance be used in order to automatically select a
certain style when starting a new document:

(if (not (buffer-has-name? (current-buffer)))
(begin
(init-style "article")
(buffer-pretend-saved (current-buffer))))

Notice that the �no name� check is important: when omitted, the styles of existing docu-
ments would also be changed to article. The function buffer-pretend-saved is used
in order to avoid TEXMACS to complain about unsaved documents when leaving TEXMACS
without changing the document.

Another typical use of my-init-buffer.scm is when you mainly want to use TEXMACS
as a front-end to another system. For instance, the following code will force TEXMACS to
automatically launch a Maxima session for every newly opened document:

(if (not (buffer-has-name? (current-buffer)))
(make-session "maxima" (url->string (current-buffer))))

Using (url->s tring (current-buffer)) as the second argument of make-session ensures
that a di�erent session will be opened for every new bu�er. If you want all bu�ers to
share a common instance of Maxima, then you should use "default" instead, for the
second argument.

User provided plug-ins.

The above technique of Scheme initialization �les is su�cient for personal customizations
of TEXMACS, but not very convenient if you want to share extensions with other users. A
more portable way to extend the editor is therefore to regroup your Scheme programs
into a plug-in.

The simplest way to write a plug-in name with some additional Scheme functionality is
to create two directories and a �le

~/.TeXmacs/plugins/name

1.2 When and how to use Scheme 11

utils/utils-keyboard.en.tm
utils/utils-menus.en.tm
overview/overview-lazyness.en.tm
overview/overview-lazyness.en.tm
overview/overview-lazyness.en.tm
overview/overview-lazyness.en.tm#redefinitions

~/.TeXmacs/plugins/name/progs
~/.TeXmacs/plugins/name/progs/init-name.scm

Furthermore, the �le init-name.scm should a piece of con�guration code of the form

(plugin-configure name
(:require #t))

Any other Scheme code present in init-name.scmwill then be executed when the plug-in is
booted, that is, shortly after TEXMACS is started up. By using the additional (:prioritary
#t) option, you may force the plug-in to be loaded earlier during the boot procedure.

Of course, the plug-in mechanism is more interesting when the plug-in contains more than
a few customization routines. In general, a plug-in may also contain additional style �les
or packages, scripts for launching extern binaries, additional icons and internationalization
�les, and so on. Furthermore, Scheme extensions are usually regrouped into Scheme
modules in the directory

~/.TeXmacs/plugins/name/progs

The initialization �le init-name.scm should then be kept as short as possible so as to
save boot time: it usually only contains lazy declarations which allow TEXMACS to load the
appropriate modules only when needed.

For more information about how to write plug-ins, we refer to the corresponding chapter.

Interactive invocation of Scheme commands.

In order to rapidly test the e�ect of Scheme commands, it is convenient to execute them
directly from within the editor. TEXMACS provides two mechanisms for doing this: directly
type the command on the footer using the ⌘⇧X shortcut, or start a Scheme session using
Insert!Session!Scheme.

The �rst mechanism is useful when you do not want to alter the document or when the
current cursor position is important for the command you wish to execute. For instance,
the command (inside? 'theorem) to test whether the cursor is inside a theorem usually
makes no sense when you are inside a session.

Scheme sessions are useful when the results of the Scheme commands do not �t on the
footer, or when you want to keep your session inside a document for later use. Some typical
commands you might want to use inside a Scheme session are as follows (try positioning
your cursor inside the session and execute them):

scheme] (define (square x) (* x x))

scheme] (square 1111111)

scheme] (kbd-map ("h i ." (insert "Hi there!")))

scheme] ;; try typing ``hi.''

Command-line options for executing Scheme commands.

TEXMACS also provides several command-line options for the execution of Scheme com-
mands. This is useful when you want to use TEXMACS as a batch processor. The Scheme-
related options are the following:

-x cmd .
Executes the scheme command cmd when booting has completed. For instance,

12 Overview of the Scheme extension language

overview/overview-lazyness.en.tm
overview/overview-lazyness.en.tm
../interface/interface.en.tm
../interface/interface.en.tm

texmacs -x "(display "Hi there\n")"

causes TEXMACS to print �Hi there!� when starting up. Notice that the -x option
may be used several times.

-q.
This option causes TEXMACS to quit. It is usually used after a -x option. For
instance,

texmacs text.tm -x "(print)" -q

will cause TEXMACS to load the �le text.tm, to print it, and quit.

-c in out .
This options may be used to convert the input �le in into the output �le out . The
su�xes of in and out determine their �le formats.

Invoking Scheme scrips from TEXMACS markup.

TEXMACS provides two major tags for invoking Scheme scripts from within the markup:

hactionjtextjscripti.
This tag works like a hyperlink with body text, but such that the Scheme command
script is invoked when clicking on the text. For instance, when clicking here, you
will launch an xterm.

hexternjfunjarg-1 j...jarg-ni.
This tag is used in order to implement macros whose body is written in Scheme
rather than the TEXMACS macro language. The �rst argument fun is a scheme
function with n arguments. During the typesetting phase, TEXMACS passes the
arguments arg-1 until arg-n to fun, and the result will be typeset. For instance, the
code

hexternj(lambda (x) `(concat "Hallo " ,x))jPieti

produces the output �Hallo Piet�. Notice that the argument �Piet� remains editable.

It should be noticed that the direct invocation of Scheme scripts from within documents
carries as risk: an evil person might send you a document with a script which attempts
to erase your hard disk (for instance). For this reason, TEXMACS implements a way to
test whether scripts can be considered secure or not. For instance, when clicking here
(so as to launch an xterm), the editor will prompt you by default in order to con�rm
whether you wish to execute this script. The desired level of security can be speci�ed in
Edit!Preferences!Security. When writing your own Scheme extensions to TEXMACS, it is
also possible to de�ne routines as being secure.

1.3. General architecture of the Scheme API

When programming Scheme extensions of TEXMACS, it may be useful to be conscious of
the internal architecture of the Scheme modules inside TEXMACS (see �gure 1.1).

1.3 General architecture of the Scheme API 13

Scheme routines from glueStandard Scheme language

Plug-insInternal modules

Language extensions, utilities and libraries

Figure 1.1. Schematic organization of the Scheme API.

Built-in Scheme commands.

On the very basic level, one has the standard Scheme language, with some enhancements
by the Guile implementation (these extensions are used as least as possible, for future
portability). The standard Scheme language is enriched by some routines implemented
in the C++ part of TEXMACS and exported to Scheme via the glue. If you unpacked the
source code of TEXMACS in source-dir , then you can �nd a full list of the routines exported
by the glue in the �les

source-dir/src/Guile/Glue/build-glue-base.scm
source-dir/src/Guile/Glue/build-glue-editor.scm
source-dir/src/Guile/Glue/build-glue-server.scm

Extensions to Scheme and further utilities.

Above the standard Scheme language and the extra routines from the glue, TEXMACS
comes with a second level of language extensions, utilities and libraries. The corresponding
Scheme �les can be found in the directories

$TEXMACS_PATH/progs/kernel
$TEXMACS_PATH/progs/utils

Roughly speaking, the functionality provided by this second level is the following:

� A certain number of frequently used abbreviations, like == for equal?.

� General language extensions for contextual overloading, logical programming, etc.

� TEXMACS-speci�c language extensions for the de�nition of menus, keyboard short-
cuts, etc.

14 Overview of the Scheme extension language

utils/utils-abbrevs.en.tm
overview/overview-overloading.en.tm
overview/overview-overloading.en.tm
overview/overview-meta.en.tm
overview/overview-meta.en.tm
utils/utils-menus.en.tm
utils/utils-keyboard.en.tm
utils/utils-keyboard.en.tm
utils/utils-keyboard.en.tm
utils/utils-keyboard.en.tm

� Additional routines for TEXMACS content manipulation and pattern matching.

� Further utilities and libraries for common types like strings and lists.

Whereas the modules in $TEXMACS_PATH/progs/kernel are automatically loaded, all mod-
ules in $TEXMACS_PATH/progs/utils have to be explicitly included.

Internal modules and plug-ins.

The remaining Scheme extensions of TEXMACS are regrouped into internal modules which
usually correspond to a particular type of content. For instance, the directories

$TEXMACS_PATH/progs/source
$TEXMACS_PATH/progs/math
$TEXMACS_PATH/progs/table

respectively contain routines for editing source code, mathematics and tables. Exceptions
are the internal modules content and fonts, which rather correspond to a particular
type of functionality. Each internal module corresponds to a group of �les, each of which
corresponds to an individual TEXMACS module. The internal modules are designed to be
as independent as possible.

From the Scheme point of view, the structure of a plug-in is very similar to that of
an internal module. Each plug-in de�nes a collection of Scheme programs in its progs
subdirectory. Although distinct plug-ins may in principle depend on each other, they are
usually designed in a way which makes them as independent as possible.

1.4. The module system and lazy definitions

As explained above, each Scheme �le inside TEXMACS or one of its plug-ins corresponds
to a TEXMACS module. The individual TEXMACS modules are usually grouped together into
an internal or external module, which corresponds to a directory on your hard disk.

Any TEXMACS module should start with an instruction of the form

(texmacs-module name
(:use submodule-1 ... submodule-n))

The name of the module is a list which corresponds to the location of the corresponding
�le. More precisely, TEXMACS searches for its modules in the path $GUILE_LOAD_PATH,
which defaults to the standard Guile load path, combined with $TEXMACS_PATH/progs
and all progs subdirectories in the plug-ins. For instance, the module (math math-edit)
corresponds to the �le

$TEXMACS_PATH/progs/edit/math-edit.scm

The user should explicitly specify all submodules on which the module depends, except
those modules which are loaded by default, i.e. all language extensions and utilities in the
directories

$TEXMACS_PATH/progs/kernel
$TEXMACS_PATH/progs/utils/library

1.4 The module system and lazy definitions 15

overview/overview-content.en.tm
overview/overview-content.en.tm

All symbols which are de�ned inside the module using define or define-macro are only
visible within the module itself. In order to make the symbol publicly visible you should
use tm-define or tm-define-macro. Currently, because of implementation details for the
contextual overloading system, as soon as a symbol is declared to be public, it becomes
visible inside all other modules. However, you should not rely on this: in the future, explicit
importation with :use might become necessary.

Because the number of TEXMACS modules and plug-ins keeps on growing, it is ine�cient to
load all modules when booting. Instead, initialization �les are assumed to declare the pro-
vided functionality in a lazy way: whenever the functionality is explicitly needed, TEXMACS
is triggered to load the corresponding modules (if this was not already done). In addition,
TEXMACSmay load some of these modules during spare time, when the computer is waiting
for user input. Indeed, this helps increasing the reactivity of TEXMACS at the �rst use of
the functionality.

For instance, assume that you de�ned a large new editing function foo-action inside the
module (foo-edit). Then your initialization �le init-foo.scm would typically contain a
line

(lazy-define (foo-edit) foo-action)

Similarly, lazy keyboard shortcuts and menus for foo might be de�ned using

(lazy-keyboard (foo-kbd) in-foo-mode?)
(lazy-menu (foo-menu) foo-menu)

For more concrete examples, we recommend the user to take a look at the standard ini-
tialization �le init-texmacs.scm.

On the negative side, the mechanism for lazy loading has the important consequence that
you can no longer make assumptions on when a particular module is loaded. For instance,
when you attempt to rede�ne a keyboard shortcut in your personal initialization �le, it
may happen that the standard de�nition is loaded after your �rede�nition�. In that case,
your rede�nition remains without consequence.

For this reason, TEXMACS also provides the instruction import-from to force a particular
module to be loaded. Similarly, the commands lazy-keyboard-force, lazy-plugin-
force, etc. may be used to force all lazy keyboard de�nitions resp. plug-ins to be loaded.
In other words, the use of laziness forces to make implicit dependencies between mod-
ules more explicit.

In the case when you want to rede�ne keyboard shortcuts, the contextual overloading
system gives you an even more �ne-grained control. For instance, assume that the keyboard
shortcut X X X has been de�ned twice, both in general and in math mode. After calling
lazy-keyboard-force and overriding the general de�nition of the shortcut, the special
de�nition will still take precedence in math mode. Alternatively, you may rede�ne the
keyboard shortcut using

(kbd-map
(:mode prevail?)
("x x x" action))

This rede�nition will prevail both in general and in math mode.

16 Overview of the Scheme extension language

overview/overview-overloading.en.tm
overview/overview-overloading.en.tm
overview/overview-overloading.en.tm
../../../progs/init-texmacs.scm
../../../progs/init-texmacs.scm
../../../progs/init-texmacs.scm
overview/overview-overloading.en.tm
overview/overview-overloading.en.tm
overview/overview-overloading.en.tm

1.5. Contextual overloading

For large software projects, it is important that di�erent modules can be developed as
independently as possible one from each other. Furthermore, fundamental modules often
implement default behaviour which is to be overwritten in a more specialized module. In
order to facilitate these two requirements, TEXMACS implements a system of contextual
overloading .

In order to get the main idea behind this system, consider the implementation of a given
functionality, like hitting the return key. Depending on the context, di�erent actions have
to be undertaken: by default, we start a new paragraph; inside a table, we start a new row;
etc. A naive implementation would check all possible cases in a routine kbd-enter and call
the corresponding routine. However, this makes it impossible to add a new case in a new
module without modifying the module which de�nes kbd-enter. By contrast, the system
of contextual overloading allows the user to conditionally rede�ne the routine kbd-enter
several times in distinct modules.

For instance, assume that we want to de�ne a function hello which inserts �Hello� by
default, but �hello()� in mode math, while positioning the cursor between the brackets.
Using contextual overloading, this may be done as follows:

(tm-define (hello) (insert "Hello"))
(tm-define (hello) (:require (in-math?)) (insert-go-to "hello()" '(6)))

The order in which routines are overloaded is important. TEXMACS �rst tries the latest
(re)de�nition. If this de�nition does not satisfy the requirements ((in-math?), in our case),
then it tries the before last (re)de�nition, and so on until an implementation is found which
matches the requirements. For example, if we invert the two declarations in the above
example, then the general unconditional de�nition of hello will always prevail. If the two
declarations are made inside di�erent modules, then it is up to the user to ensure that the
modules are loaded in an appropriate order.

Inside a rede�nition, it is also possible to access the former de�nition using the keyword
former. In particular, the code

(tm-define (hello)
(if (in-math?) (insert-go-to "hello()" '(6)) (former)))

is equivalent to the second declaration in our example.

Contextual overloading generalizes more classical overloading on the types of the argu-
ments, such as C++ style polymorphism. Although one may overload on the types of the
arguments, it is also possible to impose more general conditions on the arguments. For
instance, one may sometimes wish to write the following kind of code:

(tm-define (my-replace what by)
default-implementation)

(tm-define (my-replace what by)
(:require (== what by))
(noop))

1.5 Contextual overloading 17

Besides tm-define, several other added language primitives support the contextual over-
loading mechanism. For instance, kbd-map and menu-bind support overloading on mode.
The tm-define-macro and tm-property primitives are analogous to tm-define.

1.6. Meta information and logical programming

Small software projects usually consist of a collection of routines and data. In a large
software project, where a typical contributor has no complete overview of the program,
it is a good practice to associate additional meta-information to the individual routines
and data. This meta-information typically serves documentation purposes, but becomes
even more interesting if it can be used in an automated fashion to implement more general
additional functionality.

The tm-definemacro supports several options for associating meta-information to Scheme
functions and symbols. For instance, the :synopsis, :argument and :returns options
allow you to associate short documentation strings to the function, its arguments and
its return value:

(tm-define (square x)
(:synopsis "Compute the square of @x")
(:argument x "A number")
(:returns "The square of @x")
(* x x))

This information is exploited by TEXMACS in several ways. For instance, the synopsis of the
function can be retrieved by executing (help square). More interestingly, assuming that
we de�ned square as above, typing ⌘X followed by square and ↩ allows you to execute
square in an interactive way: you will be prompted for �A number� on the footer. Moreover,
after typing ⌘X , you will be able to use �tab-completion� in order to enter square: typing
S Q U ⇥ will usually complete into square.

In a similar vein, the :interactive and :check-mark options allow you to specify that a
given routine requires interactive user input or when it should give rise to a check-mark
when used in a menu. For instance, the statement

(tm-property (choose-file fun text type)
(:interactive #t))

in the source code of TEXMACS states that choose-file is an interactive command. As a
consequence, the File!Load entry, which is de�ned by

("Load" (choose-file load-buffer "Load file" ""))

will be followed by dots ... in the File menu. The interesting point here is that, although
the command choose-file may be reused several times in di�erent menu entries, we only
have to specify once that it is an interactive command. Similarly, consider the de�nition

(tm-define (toggle-session-math-input)
(:check-mark "v" session-math-input?)
(session-use-math-input (not (session-math-input?))))

18 Overview of the Scheme extension language

Given a menu item with (toggle-session-math-input) as its associated action, this
de�nition speci�es in particular that a check-mark should be displayed before the menu
item whenever the session-math-input? predicate holds.

Another frequently used option is :secure, which speci�es that a given routine can be used
inside TEXMACS documents, in particular inside extern and action macros. For instance, the
default implementation of the fold tag allows the user to click on the ��� before the folded
text so as to unfold the tag. When doing this, the scheme script mouse-unfold is launched.
However, for this to work, the mouse-unfold function needs to be secure:

(tm-define mouse-unfold
(:secure #t)
(with-action t
(tree-go-to t :start)
(fold)))

You can read more about the tags which depend on Scheme scripts in �Invoking Scheme
scripts from TEXMACS markup�.

In the future, the number of options for entering meta-information is likely to increase.
TEXMACS also supports an additional mechanism for the automatic deduction of new meta-
properties from existing meta-properties. This mechanism is based on a less general, but
more e�cient form of logical programming . However, since it is not fully stable yet, it will
be documented only later.

1.7. The TEXMACS content model

All TEXMACS documents or document fragments can be thought of as trees, as explained in
more detail in the chapter about the TEXMACS document format. Inside Scheme programs,
there are two main ways to represent such trees, depending on whether one manipulates
active or passive documents:

Passive documents and Scheme trees.

Passive documents, like those which are processed by a conversion tool, are usually repre-
sented by scheme trees. For instance, the fraction

a2

b+ c

is typically represented by

(frac (concat "a" (rsup "2")) "b+c")

This representation is convenient in the sense that they can be manipulated directly using
standard Scheme routines on lists.

Active documents and C++ trees.

Active documents, like ones which are visible in one of the editors windows, are rather
represented using the internal C++ type tree, which has been exported to Scheme via
the glue. When a tree is part of a real document inside the editor, the tree is aware about
its position inside the document. Using routines from the tree API, you may then make
changes in the document simply by assigning new values to the tree.

1.7 The TEXMACS content model 19

overview/overview-start.en.tm#markup-scripts
overview/overview-start.en.tm#markup-scripts
overview/overview-start.en.tm#markup-scripts
overview/overview-start.en.tm#markup-scripts
../format/basics/basics.en.tm
../format/basics/basics.en.tm

For instance, consider the following experiment: open two windows and start a Scheme
session in each window. In the second window, enter the lines

scheme] (use-modules (utils library tree))

scheme] (define t (buffer-tree))

In the �rst window, you may now modify the document in the second window using
commands like

scheme] (tree-set! t (tree 'document (string->tree "First line.")
(string->tree "Second line.")))

scheme] (tree-set t 1 (string->tree "New second line."))

scheme] (tree-set t 0 (tree 'strong (tree-ref t 0)))

A common framework.

From the last three lines in above experiment, it becomes apparent that it is quite cumber-
some to manipulate trees using the standard tree constructors. For this reason, TEXMACS
provides a hybrid type content for manipulating scheme trees and C++ trees in a common
framework. For instance, the last three lines in the above experiment may be replaced by

scheme] (tree-set! t '(document "First line." "Second line."))

scheme] (tree-set t 1 "New second line.")

scheme] (tree-set t 0 `(strong ,(tree-ref t 0)))

More precisely, a scheme expression of the type content is either a string, a tree or a list
whose �rst element is a symbol and whose remaining elements are other expressions of type
content. TEXMACS provides several routines (usually pre�xed by tm-) for basic operations
on content, like tm-car, tm-arity, tm->list, tm-equal?, etc. Most higher level routines
are built on top of these routines, so as to accept arguments of type content whenever
appropriate.

Persistent positions inside trees.

Besides the fact that trees remember their positions inside the global edit tree, it is also
possible to create cursor positions inside the global edit tree, which are naturally updated
when modi�cations take place. This technique is useful when you want to write an editing
routine which does not act locally at the cursor position. For instance, the following routine
can be used to insert content at the start of the current bu�er in a reliable way:

(define (insert-at-buffer-start t)
(with-cursor (path-start (root-tree) (buffer-path))
(insert t)))

The with-cursor macro temporarily changes the cursor position, while storing the old
cursor position in such a way that it will be updated during changes of the document. The
user may also use the more explicit routines position-new, position-delete, position-
set and position-get to manage persistent positions.

1.8. Standard utilities

Besides the basic concepts from the previous sections, which underly the scheme API for
TEXMACS, the Scheme kernel implements several other utilities and language extensions.
In this section, we will brie�y sketch some of them on hand of examples. Further details
can be found in the chapter about TEXMACS extensions to Scheme and utilities.

20 Overview of the Scheme extension language

utils/scheme-utils.en.tm
utils/scheme-utils.en.tm
utils/scheme-utils.en.tm
utils/scheme-utils.en.tm

Regular expressions.

TEXMACS implements the routines match? and select for matching regular expressions and
selecting subexpressions along a �path�. These routines both work for the content type.
For instance, in order to search all expressions of the form

a

1+ b
p

in the current bu�er, where a and b are general expressions, one may use the following
Scheme command:

scheme] (select (buffer-tree) '(:* (:match (frac :%1 (concat "1+" (sqrt
:%1))))))

Dialogues.

TEXMACS supports several commands for interactive dialogues with the user. For instance,
when executing the following scheme command, you will be prompted for two numbers,
whose product will be displayed in the footer:

Scheme] (user-ask "First number:"
(lambda (a)
(user-ask "Second number:"
(lambda (b)
(set-message (number->string (* (string->number a)

(string->number b)))
"product")))))

Scheme]

User preferences.

When writing a plug-in, you may wish to de�ne some new user preferences. This can
be done using the define-preferences command, which adds a list of user preferences,
together with their default values and a call-back routine. The call-back routine is called
whenever you change the corresponding preference. For instance:

(define-preferences
("Gnu's hair color" "brown" notify-gnu-hair-change)
("Snail's cruising speed" "1mm/sec" notify-Achilles))

Preferences can be set, reset and read using set-preference, reset-preference and
get-preference.

New data formats and converters.

New data formats and converters can be declared using the define-format and converter
instructions. When a format can be converted from or into TEXMACS, then it will automat-
ically appear into the File!Export and File!Import menus. Similarly, when a format can
be converted to Postscript, then it also becomes a valid format for images. TEXMACS
also attempts to combine explicitly declared converters into new ones.

Typically, the declaration of a new format and a converter would look like:

1.8 Standard utilities 21

(define-format blablah
(:name "Blablah")
(:suffix "bla"))

(converter blablah-file latex-file
(:require (url-exists-in-path? "bla2tex"))
(:shell "bla2tex" from ">" to))

22 Overview of the Scheme extension language

Chapter 2

TEXMACS extensions to Scheme and utilities

2.1. TEXMACS abbreviations

2.2. Matching regular expressions

Regular expressions naturally generalize from strings to trees and allow to test whether a
given tree matches a given pattern. TEXMACS implements the primitives match? and match
for this purpose, which also provide support for wildcards, user-de�ned grammars and
more.

(match? expr pattern) (check whether a scheme expression satis�es a pattern)

This function determines whether a scheme expression expr satis�es a given pattern.
It will be detailed below how to form valid patterns. The pattern may contain named
wildcards, in case of success, we return a list with matches for these wildcards. In
case of failure, we return #f. The expression expr may contain trees, in which case we
understand that such tree subexpressions should match their scheme counterparts. For
instance, (match? (tree "x") "x") will return (()), whereas (match? (tree "x")
"y") returns #f.

(match l pattern bindings) (solutions to a given pattern under bindings)

Given a list l of scheme expressions, a pattern with free variables and an association
list of bindings, this routine determines all substitutions of free variables by values
(extending the given bindings), for which l matches the pattern.

(define-regexp-grammar rules*) (user de�ned matching grammars)

Given a list of rules of the form (:var pattern-1 ... pattern-n), this instruction
de�nes a new terminal symbol :var for each such rule, which matches the disjunction
of the patterns pattern-1 until pattern-n. This terminal symbol can then be used
as an abbreviation in matching patterns. Grammar rules may be interdependent. See
example below.

Valid patterns are formed in the following ways:

leaf (symbols, strings, etc.)

A leaf is only matched against itself.

(pattern-1 ... pattern-n) (lists)

In the case when lists l-1 until l-n match pattern-1 until pattern-n, their concate-
nation matches the pattern (pattern-1 ... pattern-n).

23

:%1, :%2, :%3 ..., :* (wildcards)

The wildcard :%n, where n is a number matches any list of length n. The wildcard :*
matches any list, including the empty list.

'var (variables)

This pattern attempts to bind the variable var against the expression. If var is used
only once, then it essentially behaves as a wildcard. More generally, it can be used to
form patterns with identical subexpressions. For instance, the pattern (frac 'x 'x)
will match all fractions x

x
.

:var (user-provided grammar rules)

In the case when :var is a user-provided terminal symbol (see define-regexp-grammar
above), this pattern matches the corresponding grammar.

:pred? (arbitrary Scheme predicates)

Given a Scheme predicate pred?, such as string?, this pattern matches any scheme
expression which satis�es the predicate.

(:not pattern)
(:or pattern-1 ... pattern-n)
(:and pattern-1 ... pattern-n) (logical operations)

Negation, disjunction and conjunction of patterns.

(:repeat pattern) (repetition)

Given lists l-1 until l-n which match pattern, their concatenation matches the rep-
etition (:repeat pattern). In particular, the empty list is matched.

(:group pattern-1 ... pattern-n) (grouping)

Groups a concatenation of patterns into a new list patterns. For instance, all lists
of the form (a b a b ... a b) are matched by (:repeat (:group a b)), whereas
(:repeat (a b)) rather matches all lists of the form ((a b) (a b) ... (a b)).

(:quote expr) (quotation)

Only matches a given expression expr.

Example 2.1. The tree

(define t '(foo (bar "x") (bar "y") (option "z")))

matches the pattern (foo (:repeat (bar :%1)) :*), but not (foo (:repeat (bar 'x))
:*). The call (match t '(foo 'x 'y :*)) will return (((x . (bar "x")) (y . (bar
"y")))). Notice that (x . (bar "x")) will be displayed as (x bar "x"):

Scheme] (define t '(foo (bar "x") (bar "y") (option "z")))

Scheme] (match? t '(foo 'x 'y :*))

(((y bar "y") (x bar "x")))

Example 2.2. Consider the grammar

24 TEXMACS extensions to Scheme and utilities

(define-regexp-grammar
(:a a b c)
(:b (:repeat :a)))

Then the list (a b x y c a a) matches the pattern (:b :%2 :b).

2.3. Selection of subexpressions

Besides pattern matching on trees, TEXMACS provides the routine select for pattern
matching along paths. Given a tree, this mechanism typically allows the user to select
all subtrees which are reached following a path which meets speci�c criteria. For instance,
one might to select the second child of the last child or all square roots inside numerators
of fractions. The syntax of the selection patterns is also used for high level tree accessors.

(select expr pattern) (select subexpressions following a pattern)

Select all subtrees inside a hybrid tree expr according to a speci�c path pattern.

Patterns are lists of atomic patterns of one of the following forms:

0, 1, 2, ... (select a speci�c child)

Given an integer n, select the n-th child of the input tree. For instance, (select '(frac
"1" "2") '(0)) returns ("1").

:first, :last (select �rst or last child)

Select �rst or last child of the input tree.

(:range start end) (select children in a range)

Select all children in a speci�ed range.

label (select children with a given label)

Select all compound subtrees with the speci�ed label. Example:

Scheme] (select '(document (strong "x") (math "a+b") (strong "y"))
'(strong))

((strong "x") (strong "y"))

:%1, :%2, :%3, ... (select descendants of a given generation)

The pattern :%n, where n is a number, selects all descendants of the n-th generation.
Example:

Scheme] (select '(foo (bar "x" "y") (slash (dot))) '(:%2))

("x" "y" (dot))

:* (select all descendants)

This pattern selects all descendants of the tree. For instance, (select t '(:* frac 0
:* sqrt)) selects all square roots inside numerators of fractions inside t.

(:match pattern) (matching)

This pattern matches the input tree if and only the input tree matches the speci�ed
pattern according to match?. Example:

2.3 Selection of subexpressions 25

Scheme] (select '(foo "x" (bar)) '(:%1 (:match :string?)))

("x")

Example with creation of a custom predicate:

Scheme] (select '(foo "x" (bar)) '(:* (:match :tree-atomic?)))

()

Scheme]

List of useful predicates:

(:or pattern-1 ... pattern-n)
(:and pattern-1 ... pattern-n) (boolean expressions)

These rules allow for the selection of all subtrees which satisfy one among or all patterns
pattern-1 until pattern-n.

In the case when the input tree is active, the function select supports some additional
patterns which allow the user to navigate inside the tree.

:up (parent)

This pattern selects the parent of the input tree, if it exists.

:down (child containing the cursor)

If the cursor is inside some child of the input tree, then this pattern will select this child.

:next (next child)

If the input tree is the i-th child of its parent, then this pattern will select the (i+1)-
th child.

:previous (previous child)

If the input tree is the i-th child of its parent, then this pattern will select the (i¡ 1)-
th child.

2.4. Logical programming extensions

2.5. Function definition and contextual overloading

Conventional programming languages often provide some means to overload certain func-
tions depending on the types of the arguments. TEXMACS provides additional context-based
overloading mechanisms, which require the use of the tm-define construct for function
de�nitions (and tm-define-macro for macro de�nitions). De�nition with tm-define also
allows the speci�cation of properties of the function/macro: arguments, synopsis, etc.

Furthermore, one may use tm-property for associating additional properties, such as
interactivity or default values for the arguments, of a function which is already de�ned ,
speci�cally functions exported from C++ code through the glue.

26 TEXMACS extensions to Scheme and utilities

(tm-define head options* body*) (TEXMACS function de�nition)

(tm-define-macro head options* body*) (TEXMACS macro de�nition)

TEXMACS function and macro declarations are similar to usual declarations based on
define and define-macro, except for the additional list of options and the fact that
all functions and macros de�ned using tm-define and tm-define-macro are public.
Each option is of the form (:kind arguments*) and the body starts at the �rst ele-
ment of the list following head which is not of this form. Available options are :type,
:synopsis, :returns, :note, :argument, :default, :proposals, :secure, :check-
mark, :interactive and :balloon.

(tm-property head options*) (TEXMACS properties de�nition)

tm-property allows the declaration of TEXMACS properties for functions which have
already been de�ned, speci�cally for functions exported through the glue. Available
options are :type, :synopsis, :returns, :note, :argument, :default, :proposals,
:secure, :check-mark, :interactive and :balloon.

Contextual overloading.

We will �rst describe the most important :require option for contextual overloading,
which was already discussed before.

(:require cond) (argument based overloading)

This option speci�es that one necessary condition for the declaration to be valid is that
the condition cond is met. This condition may involve the arguments of the function.

As an example, let us consider the following de�nitions:

(tm-define (special t)
(and-with p (tree-outer t)
(special p)))

(tm-define (special)
(:require (tree-is? t 'frac))
(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0))))

(tm-define (special)
(:require (tree-is? t 'rsub))
(tree-set! t `(rsup ,(tree-ref t 0))))

The default implementation of special is to apply special to the parent p of t as
long as t is not the entire document itself. The two overloaded cases apply when t is
either a fraction or a right subscript.

Assuming that your cursor is inside a fraction inside a subscript, calling special will
swap the numerator and the denominator. On the other hand, if your cursor is inside
a subscript inside a fraction, then calling special will change the subscript into a
superscript.

When the conditions of several (re)declarations are met, then the last redeclaration
will be used. Inside a redeclaration, one may also use the former keyword in order to
explicitly access the former value of the rede�ned symbol.

2.5 Function definition and contextual overloading 27

overview/overview-overloading.en.tm

(:mode mode) (mode-based overloading)

This option is equivalent to (:require (mode)) and speci�es that the de�nition is only
valid when we are in a given mode. New modes are de�ned using texmacs-modes and
modes can inherit from other modes.

(texmacs-modes . modedefs) (de�ne new texmacs modes)

Use this macro to de�ne new modes that you can use for contextual overloading, for
instance in kbd-map. Modes may be made dependent on other modes. This macro
takes a variable number of de�nitions as arguments, each of the form (mode-name
conditions . dependencies). End your mode-name and any dependencies with one
%, like this:

(texmacs-modes
(in-verbatim% (inside? 'verbatim) in-text%)
(in-tt% (inside? 'tt)))

When creating new modes remember to place �rst the faster checks (against booleans,
etc.) for speed.

Other options for function and macro declarations.

Besides the contextual overloading options, the tm-define and tm-define-macro primi-
tives admit several other options for attaching additional information to the function or
macro. We will now describe these options and explain how the additional information
attached to functions can be exploited.

Warning 2.3. A current limitation of the implementation is that functions overloaded
using :require and :mode cannot have di�erent options. This means in particular that
you cannot specify di�erent values for :synopsis depending on the context.

(:synopsis short-help) (short description)

This option gives a short description of the function or macro, in the form of a string
short-help. As a convention, Scheme expressions may be encoded inside this string
by using the @-pre�x. For instance:

(tm-define (list-square l)
(:synopsis "Appends the list @l to itself")
(append l l))

The synopsis of a function is used for instance in order to provide a short help string for
the function. In the future, we might also use it for help balloons describing menu items.

(:argument var description)
(:argument var type description) (argument description)

This option gives a short description of one of the arguments var to the function or
macro. Such a description is used for instance for the prompts, when calling the function
interactively. For these uses, the second format allows for the speci�cation of a type
which changes how the widgets/prompts work. Some allowed values are "string", the
default, and "file" and "directory". If any of the last two is speci�ed, tab completion
in the interactive prompt will traverse the �le system.

28 TEXMACS extensions to Scheme and utilities

(:returns description) (return value description)

This option gives a short description of the return value of the function or macro.

(:type (-> from to)) (type conversion description)

This option speci�es that a function or macro performs a conversion from the data type
from to the data type to.

2.6. Interactive dialogues

2.7. User preferences

Preferences are used to store any information you need to keep across di�erent runs of
TEXMACS, like window position and size, active menu bars, etc. Internally they are stored
in the users home directory as a Scheme list of items like ("name" value) which therefore
has in principle no structure. However, a good practice to avoid con�icts is to pre�x your
options by the name of the plugin or module you are creating, like in "gui:help-window-
position".

The �rst step in de�ning a new preference is adding it with define-preferences and
assigning a call-back function to handle changes in the preference. This is important for
instance in menus, where a click on an item simply sets some preference to some value and
it's up to the call-back to actually take the necessary actions.

Warning. One may not store the boolean values #t, #f directly into preferences. Instead
one should use the strings "on" and "off". This is due to the internal storage of default
values for preferences using ahash-table.

(define-preferences list) (de�ne new preferences with defaults and call-backs)

Each element of list is of the form ("somename" default-value notify-procedure)
where notify-procedure is a procedure taking two arguments like this:

(define (notify-procedure property-name value) (do-things))

Remember to use the strings "on" and "off" instead of booleans #t, #f.

Example *

Scheme] (define (notify-test pref value)
(display* "Hey! " pref " changed to " value) (newline))

Scheme] (define-preferences ("test:pref" "off" notify-test))

Scheme] (get-preference "test:pref")

"off"

Scheme] (set-preference "test:pref" "on")

Scheme] (preference-on? "test:pref")

2.7 User preferences 29

#t

Scheme]

(set-preference name value) (set user preference)

Save preference name with value value. Then call the call-back associated to this
preference, as de�ned in define-preferences.

Remember to use the strings "on" and "off" instead of booleans #t, #f.

(append-preference name value) (appends a value to the list for a preference)

This convenience function appends value to the list of values of preference name, or cre-
ates a list with one element in case the preference didn't exist. The call-back associated
to this preference, as de�ned in define-preferences is called once the modi�cation is
done.

(reset-preference name) (delete user preference)

Deletes preference name from the user preferences.

(get-preference name) (get user preference)

Returns the value of preference name. If the preference is not defined the string "default"
is returned.

(preference-on? name) (test boolean user preference)

Returns #t if the value of preference name is "on".

(toggle-preference name) (change value of boolean user preference)

Toggles the value of preference name between "on" and "off".

2.8. Adding converters

2.9. Keyboard bindings

2.10. Defining menus

30 TEXMACS extensions to Scheme and utilities

Chapter 3

Programming routines for editing documents

3.1. The TEXMACS editing model

Routines for editing documents are usually based on one or several of the following ingre-
dients:

1. Identi�cation of the document fragments which have to be edited.

2. Modi�cation of one or several document fragments.

3. Moving the cursor to a new place.

Before going into the precise API which allows you to carry out these tasks, let us �rst
describe the fundamental underlying data types, and go through an example.

Document fragments.

All TEXMACS documents or document fragments can be thought of as trees, as explained
in more detail in the chapter about the TEXMACS document format. For instance, the
mathematical formula

a1+ ���+ an (3.1)

corresponds to the tree

concat

a rsub

1

+���+ a rsub

n

(3.2)

Trees which are part of a document which is e�ectively being edited are said to be active,
and they are implemented using the Scheme type tree.

Besides this representation format, which is preferred when editing document fragments,
TEXMACS also allows you to represent passive document fragments by Scheme trees. This
alternative representation, which corresponds to the Scheme type stree, is more con-
venient when writing routines for processing documents (such as conversions to another
format). Finally, TEXMACS provides a hybrid representation, which corresponds to the
Scheme type content. The content type (corresponding to the pre�x tm-, for simplicity)
is typically used for writing abstract utility routines for trees, which can then be applied
indistinctly to objects of type tree or stree.

31

../format/basics/basics.en.tm
../format/basics/basics.en.tm
overview/overview-content.en.tm#tree-active
overview/overview-content.en.tm#tree-passive
overview/overview-content.en.tm#tree-hybrid

One major advantage of active trees (of type tree) is that they are aware of their own
location in the document. As a consequence, TEXMACS provides editing routines which allow
you to modify the document simply by assigning a tree to a di�erent value. For instance,
assume that the Scheme variable t contains the subscript 1 in formula (3.1). Then the
instruction

(tree-set! t "2")

will simultaneously change the subscript into a 2 and update the Scheme variable t.
Another nicety is that the value of t is persistent during changes of other parts of the
document. For instance, if we change the a's into b's in the formula (3.1), then t keeps its
value and its location. Of course, the location of t may be lost when t or one of its parents
is modi�ed. Nevertheless, the modi�cation routines are designed in such a way that we try
hard to remember locations. For instance, if �a0+ � is inserted in front of the formula (3.1)
using the routine tree-insert!, then t keeps its value and its location, even though one
of its ancestors was altered.

Some further precisions and terminology will be useful. First of all, we have seen a distinc-
tion between active and passive trees, according to whether a tree is part of a document or
not. Secondly, TEXMACS both supports native trees (of type tree), which are implemented
in C++, and scheme trees (of type stree), which have a more familiar Scheme syntax.
Finally, hybrid trees unify native and scheme trees. Formally speaking, a hybrid tree is
either a string, a native tree or a list whose �rst element is a symbol and whose other
elements are again hybrid trees. We notice that active trees are necessarily native, but
native trees may both be active or passive. Furthermore, certain descendants of an inactive
tree may be active, but we never have the contrary.

Positions inside document fragments.

The main way to address positions inside a tree is via a list of positive integers, called a
path, and corresponding to the Scheme type path. For instance, assume that x corresponds
to the expression (3.1). Then the subscript 1 is identi�ed uniquely by the path (1 0).
Similarly the cursor position just behind the subscript 1 corresponds to the path (1 0 1).
More generally, if p is a path to a string leaf, then the path (rcons p i) corresponds
to the cursor position just behind the i-th character in the string (we notice that rcons
is used to append a new element at the end of a list). If p is a path to a non-string
subtree, then (rcons p 0) and (rcons p 1) correspond to the cursor positions before
and behind this subtree.

It should be noticed that paths do not necessarily correspond to valid subtrees or cursor
positions. Clearly, some of the elements in the path may be �out of range�. However,
certain a priori possible cursor positions may correspond to invisible parts of the docu-
ment (like a cursor position inside a folded argument or an attribute of with). Moreover,
two possible cursor positions may actually coincide, like the paths (0) and (0 0) inside
the expression (3.1). In this example, only the second cursor path is valid. Usually, the
validity of a cursor path may be quickly detected using DRD (Data Relation De�nition)
information, which is determined from the style �le. In exceptional cases, the validity may
only be available after typesetting the document.

It should also be noticed that all active trees are a subtree of the global TEXMACS edit tree
or root tree, which can be retrieved using (root-tree). The routines tree->path and
path->tree can be used in order to get the location of an active tree and the active tree
at a given location.

32 Programming routines for editing documents

A simple way to address subtrees of a tree in a more persistent way is using object of
type tree, i.e. by considering the subtrees themselves. The persistent analogue of a cursor
path is a persistent position, which corresponds to an object of Scheme type position.
One particularity of persistent positions is that, even when a tree into which they point
is removed, they keep indicating a valid close position in the remaining document. For
instance, assume that pos stands for the cursor position (1 0 1) in the expression (3.1). If
we remove a1+ ���+ , then the tree corresponding to the remaining expression an is given by

concat

a rsub

n

and the position associated to pos becomes (0 0). TEXMACS provides the routines position-
new, position-delete, position-set and position-get to create, delete, set and get
persistent cursor positions.

Semantic navigation and further utilities.

Because accessing subtrees using paths may become quite cumbersome, TEXMACS provides
some additional functionality to simplify this task. As a general rule, the routines select
and match?may be used to select all subtrees of a given tree which match a certain pattern.
For instance, if x corresponds to the expression (3.1), then

(select x '(rsub :%1))

returns a list with the two subscripts 1 and n. In fact, select may also be used in order
to navigate through a tree. For instance, if t corresponds to the subscript 1 in (3.1), then

(select t '(:up :next))

returns the list with one element �+���+a�. The routine select is implicitly called by many
routines which operate on trees. For instance, with t as above,

(tree-ref t :up :next)

directly returns the tree �+���+ a�.

Besides simpler access to subtrees of a tree or other �close trees�, TEXMACS also provides
several other useful mechanisms for writing editing routines. For instance, the routine
tree-innermost and the macro with-innermost may be used to retrieve the innermost
supertree of a certain type at the current cursor position. Since many editing routines
operate at the current cursor position, two other useful macros are with-cursor and
cursor-after, which allow you to perform some operations at a temporarily distinct
cursor position resp. to compute the cursor position after some operations, without actually
changing the current cursor position.

A worked example.

In order to illustrate the TEXMACS API for editing documents on a simple example, assume
that we wish to write a function swap-numerator-denominator which allows us to swap
the numerator and the denominator of the innermost fraction at the current cursor position.

3.1 The TEXMACS editing model 33

The innermost fraction may simply be retrieved using the macro with-innermost. Together
with the routine tree-set! for modifying a tree, this yields a �rst simple implementation:

(define (swap-numerator-denominator)
(with-innermost t 'frac
(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0)))))

It should be noticed that the macro with-innermost ignores its body whenever no inner-
most fraction is found.

The above implementation has the disadvantage that we loose the current cursor posi-
tion inside the numerator or denominator (wherever we were). The following refined
implementation allows us to remain at the �same position� modulo the exchange numer-
ator/denominator:

(define (swap-numerator-denominator)
(with-innermost t 'frac
(with p (tree-cursor-path t)
(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0)))
(tree-go-to t (cons (- 1 (car p)) (cdr p))))))

Here we used the routines tree-cursor-path and tree-go-to, which allow us to manip-
ulate the cursor position relative to a given tree.

As the icing on the cake, we may make our routine available through the mechanism of
structured variants:

(define (variant-circulate t forward?)
(:require (tree-is? t 'frac))
(swap-numerator-denominator))

Notice that this implementation can be incorrect when operating on nested fractions. The
implementation can be further improved by letting swap-numerator-denominator operate
on a speci�c tree:

(define (swap-numerator-denominator t)
(:require (tree-is? t 'frac))
(with p (tree-cursor-path t)
(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0)))
(tree-go-to t (cons (- 1 (car p)) (cdr p)))))

The corresponding generic routine could be de�ned as

(define (swap-numerator-denominator t)
(and-with p (tree-outer t)
(swap-numerator-denominator p)))

This piece of code will perform an outward recursion until a speci�c handler is found.
We may now replace the call (swap-numerator-denominator) by (swap-numerator-
denominator (cursor-tree)).

34 Programming routines for editing documents

The new implementation also allows us to toggle the numerator and denominator of
a selected fraction using (swap-numerator-denominator (focus-tree)). However, the
focus is not necessarily conserved during the operation, thereby disallowing to restore
the original state by toggling a second time. We may explicitly conserve the focus as follows:

(define (swap-numerator-denominator t)
(:require (tree-is? t 'frac))
(with p (tree-cursor-path t)
(tree-set! t `(frac ,(tree-ref t 1) ,(tree-ref t 0)))
(tree-go-to t (cons (- 1 (car p)) (cdr p)))
(tree-focus t)))

This routine will even work when we are inside a nested fraction and operating on the
outer fraction.

3.2. Fundamental tree modification routines

From an internal point of view, all modi�cations to the TEXMACS edit tree are decom-
posed into atomic modi�cations of eight di�erent types. In this section, we describe the
Scheme interface to these fundamental modi�cation routines. Even though it is usually
more convenient to use higher level modi�cation routines, as described in the next section,
the fundamental tree modi�cation routines may occasionally be useful as well.

It should be emphasized that the fundamental tree modi�cation routines are not checked
for their correctness. It is the responsibility of the user to verify that the operations are
valid and that they lead to a correct new edit tree. Although it is sometimes possible
to leave the edit tree in a temporarily incorrect or �unsimpli�ed� state (for instance, by
allowing subtrees of the form (concat "")), this practice is not generally recommended,
and may lead to severe bugs.

(tree-assign! var new-value) (tree assignment)

On input, we have a Scheme variable var of type tree and new-value of type content.
The macro replaces the tree by new-value and updates var accordingly. The new tree
value of var is returned.

(tree-insert! var pos ins) (insertion of new nodes or characters)

The �rst parameter var is a Scheme variable of type tree. If var is a compound tree,
then ins should be a list u0; :::; ul¡1 of new children of type content. In that case, the
routine inserts u0; :::; ul¡1 into the children of var, at position pos (see �gure 3.1). If
var is a string tree, then ins should be of string content type, and the string ins is
inserted into var at position pos. The variable var is updated with the result of the
insertion and the result is returned.

(tree-remove! var pos nr) (removal of nodes or characters)

The �rst parameter var is a Scheme variable of type tree. If var is a compound tree,
then nr of its children are removed, starting at position pos (see �gure 3.1). If var is a
string tree, then nr characters are removed, starting at position pos. The variable var
is updated with the result of the removal and the result is returned.

3.2 Fundamental tree modification routines 35

edit/edit-modify.en.tm
edit/edit-modify.en.tm

t

t0 ��� tn¡1
¡!insert(t;i;u)

t

t0 ��� ti¡1 u0 ��� ul¡1 ti ��� tn¡1

t

t0 ��� tn¡1
¡!remove(t;i;l)

t

t0 ��� ti¡1 ti+l ��� tn¡1

Figure 3.1. Illustration of the operations (tree-insert! t i u) and (tree-remove! t i l).
If u has length l, then we notice that (tree-remove! t i l) undos the insertion (tree-insert!
t i u).

(tree-split! var pos at) (split the children into two parts)

The �rst parameter var is a Scheme variable of type tree. The macro is used to split
the child u of var at position pos into two parts. If u is a compound tree, then the
�rst part consists of the �rst at children and the second part of the remaining ones.
Both parts carry the same label as u and u is replaced by the two parts inside var (see
�gure 3.2). If u is string tree, then it is rather split into two strings at position at. The
variable var is updated with the result of the split command and the result is returned.

(tree-join! var pos) (join two adjacent nodes)

The �rst parameter var is a Scheme variable of type tree. This macro is used to
join the child u of var at position pos with the child v at position pos+1. If u and v
are trees, then they are removed from var and replaced by a single tree which has the
same label as u and whose children are those of u, followed by the children of v (see
�gure 3.2). If u and v are strings, then they are replaced by their concatenation. The
variable var is updated with the result of the join command and the result is returned.

t

t0 ��� ti

ti;0 ��� ti;k¡1

��� tn¡1 ¡!split(t;i;j)

t

t0 ��� ti

ti;0 ��� ti;j¡1

ti

ti;j ��� ti;k¡1

��� tn¡1

t

t0 ��� ti

ti;0 ��� ti;j¡1

ti+1

ti+1;j ��� ti+1;k¡1

��� tn¡1 ¡!join(t;i)

t

t0 ��� ti

ti;0 ��� ti;j¡1 ti+1;0 ��� ti+1;k¡1

��� tn¡1

Figure 3.2. Illustration of the operations (tree-split! t i j) and (tree-join! t i). Notice
that (tree-join! t i) undos (tree-split! t i j).

(tree-assign-node! var lab) (assign the label of a tree)

This macro replaces the label of a compound tree stored in a Scheme variable var by
a new value lab. The result of the substitution is returned.

(tree-insert-node! var pos ins) (insert the tree as a child of another one)

Given a Scheme variable var, containing a tree, and a content tree ins, this macro
replaces var by ins, with var inserted as a new child of ins at position pos (see �gure
3.3). The result of the insertion is returned.

36 Programming routines for editing documents

(tree-remove-node! var pos) (replace a tree by a child)

Given a Scheme variable var, containing a compound tree, this macro replaces var by
its child at position pos (see �gure 3.3). The value of this child is returned.

t ¡!insert¡node(t;i;u)
u

u0 ��� ui¡1 t ui ��� un¡1

t

t0 ��� tn¡1
¡!remove¡node(t;i) ti

Figure 3.3. Illustration of the operations (tree-insert-node! t i u) and (tree-remove-node!
t i). Notice that the second operation undoes the �rst one.

Remark 3.1. Each of the macros tree-assign!, tree-insert!, etc. has a functional
counterpart tree-assign, tree-insert, etc. The �rst parameter of these counterparts can
be an arbitrary �l-value� and does not have to be a scheme variable. However, in the case
when a Scheme variable is passed as the �rst parameter, these variants do not necessarily
update its contents with the return value.

3.3. High level modification routines

The routine tree-set and the corresponding macro tree-set! can be used as a higher
level interface to the fundamental routines for modifying trees as described in the previous
section. However, it is still up to the user to verify that the resulting edit tree is still correct.

(tree-set which accessors* new-value)
(tree-set! which accessors* new-value) (smart tree assignment)

This routine replaces the tree (tree-ref which accessors*) by a new content value
new-value. Besides the fact that the routine tree-set supports additional accessors for
which (see the description of tree-ref below), tree-set di�ers from tree-assign in
this respect that tree-set tries to cleverly decompose the assignment into fundamental
modi�cation routines. The objective of this decomposition is to make a less intrusive
modi�cations in the document, so as to preserve as many tree positions and cursor
positions as possible.

For instance, the operation (tree-set t t) is a no-operation for all trees t. A more
complex operations like

(tree-set! t `(foo "Hop" ,(tree-ref t 2)))

is decomposed into the following fundamental modi�cations:

(tree-remove-node! t 2)
(tree-insert-node! t 1 '(foo "Hop"))

Like in the case tree-assign and tree-assign!, you should use the macro tree-set!
in order to update the value of which if which is a Scheme variable accessors is the
empty list.

3.3 High level modification routines 37

edit/edit-fundamental.en.tm
edit/edit-fundamental.en.tm

(tree-ref which accessors*) (enhanced tree access)

In its simplest form, this routine allows for the quick access of a subtree of which via
a list of integers accessors. For instance, if which contains the tree (frac "a" (sqrt
"b"))), then (tree-ref which 1 0) returns the tree "b".

In its general form, tree-ref relies on the routine select in order to compute the
desired subtree. With which as in the above example, this makes it possible to retrieve
the subtree (sqrt "b") using (tree-ref t 'frac). In the case when there are sev-
eral matches, the �rst match is returned. For instance, if which contains the tree
(frac (sqrt "a") (sqrt "b"))), then (tree-ref t 'frac) returns (sqrt "a").

In fact, the result of tree-ref is not necessarily a subtree of which: the select utility
also accepts the accessors :up, :down, :next, :previous, etc. for navigating inside the
edit tree starting with which. For instance, (tree-ref (cursor-tree) :up) returns
the parent of the cursor tree. For more details, we refer to the documentation of select.

Besides the above routine for the direct modi�cation of a subtree of the document, TEXMACS
also provides several routines for inserting content at the current cursor position.

(insert what) (insertion of content)

Insert the content what at the current cursor position. TEXMACS does some additional
checking whether it is allowed to perform the insertion. For instance, it is disallowed
to insert multi-paragraph content inside a mathematical formula. Whenever the user
attempts to make an invalid insertion, then insert is equivalent to a no-operation.

(make lab) (insertion of a tag)

This routine may be used to insert a valid tag with label lab. As many empty arguments
as necessary are inserted in order to make the tag valid. Similarly, if lab is a multi-
paragraph tag, then the necessary operations are performed to put the tag in a separate
paragraph.

make-with, insert-return, etc.

3.4. Path-based navigation

38 Programming routines for editing documents

Chapter 4

TEXMACS buffer management

4.1. Introduction

There are three main kinds of objects for bu�er management in TEXMACS:

Bu�ers. Every open TEXMACS document is stored in a unique editable bu�er. Bu�ers
typically admit a one to one correspondence to �les on disk or elsewhere on the
web. Some bu�ers are of a more auxiliary nature, such as automatically generated
help bu�ers. All bu�ers admit a unique URL. In the case of auxiliary bu�ers, this
URL is really a read-only �placeholder�, so saving this kind of bu�ers is impossible
(of course, it remains possible to save the bu�er under a new name).

Views. It is possible to have multiple views on the same bu�er. Every view is identi�ed
by a unique automatically generated URL, which again acts as a placeholder.

Windows. Views (contrary to the bu�ers themselves) can be displayed in actual win-
dows. Currently, any TEXMACS window contains a unique view and a view may
only be displayed in one window at the same time (of course, it is possible to
display di�erent views on the same bu�er in di�erent windows). Windows are again
represented by automatically generated URLS.

Remark 4.1. In the future, views and windows should really be considered as documents
themselves. Changes in the view will be automatically propagated (or not) to the corre-
sponding bu�er, and the other views. Windows will contain a document which speci�es
its layout (menus and toolbars). The corresponding view (or views) will be an active
hyperlink (or active hyperlinks). The current APIs already re�ect these future development
intentions.

4.2. Manipulating TEXMACS buffers

Basic bu�er management.

(buffer-list) (list of all bu�ers)

This routine returns the list of all open bu�ers.

(current-buffer) (current bu�er)

Return the current view. The program may abort if there exists no current bu�er.

(path->buffer p) (bu�er which contains a certain path)

Return the bu�er which contains a certain path p, or #f.

39

(tree->buffer t) (bu�er which contains a certain tree)

Return the bu�er which contains a certain tree t, or #f.

(buffer->views buf) (list of views on a bu�er)

This routine returns the list of views on the bu�er buf.

(buffer->windows buf) (list of windows containing bu�er)

This routine returns the list of windows in which the bu�er buf is currently being
displayed.

(buffer-new) (create a new bu�er)

Create a new bu�er and returns its URL.

(buffer-rename buf new-name) (create a new bu�er)

Give a new name new-name to the bu�er buf.

(switch-to-buffer buf) (switch the editor's focus)

Switch the editor's focus to the bu�er buf.

Information associated to bu�ers.

(buffer-set buf rich-t)
(buffer-get buf) (set/get the contents of the bu�er)

Set the contents of the bu�er buf to the rich tree rich-t, resp. get the rich contents
of buf. Rich trees do not only contain the actual body of the document, but also some
meta-data, such as its style, initial values of environment variables, and other auxiliary
data attached to the document.

(buffer-set-body buf t)
(buffer-get-body buf) (set/get the main body of the bu�er)

Set the main body of the bu�er buf to the tree t, resp. get the main body of buf.

(buffer-set-master buf master)
(buffer-get-master buf) (set/get the master of the bu�er)

Set the master of the bu�er buf to master, resp. get the master of buf. The master
of a bu�er should again be a bu�er. Usually, the master of a bu�er is the bu�er itself.
Otherwise, the bu�er will behave similarly as its master in some respects. For instance,
if a bu�er a/b.tm admits x/y.tm as its master, then a hyperlink to c.tm will point to
x/c.tm and not to a/c.tm.

(buffer-set-title buf name)
(buffer-get-title buf) (set/get the title of the bu�er)

Set the title of the bu�er buf to the string name, resp. get the title of buf. The title is
for instance used as the title for the window.

(buffer-set-title buf name)
(buffer-get-title buf) (set/get the title of the bu�er)

Set the title of the bu�er buf to the string name, resp. get the title of buf. The title is
for instance used as the title for the window.

40 TEXMACS buffer management

(buffer-last-save buf)
(buffer-last-visited buf) (time when a bu�er was visited/saved last)

Return the time when the bu�er buf was visited or saved last.

(buffer-modified? buf)
(buffer-pretend-saved buf) (check for modi�cations since last save)

The predicate buffer-modified? check whether the bu�er buf was modi�ed since the
last time it was saved. The routine buffer-pretend-saved can be used in order to
pretend that the bu�er buf was saved, without actually saving it. This can for instance
be useful if no worthwhile changes occurred in the bu�er since the genuine last save.

Synchronizing with the external world.

Bu�ers inside TEXMACS usually correspond to actual �les on disk or elsewhere. When
changes occur on either side (e.g. when editing the bu�er, or modifying the �le on disk
using an external program), the following routines can be used in order to synchronize the
bu�er inside TEXMACS with its corresponding �le on disk.

(buffer-load buf) (load bu�er)

Retrieve the bu�er buf from disk (or elsewhere). Returns #t on error and #f otherwise.
The format being used for loading �les is chosen as a function of the extension of buf.

(buffer-save buf) (save bu�er)

Save the bu�er buf to disk (or elsewhere). Returns #t on error and #f otherwise. The
format being used for saving �les is chosen as a function of the extension of buf.

(buffer-import buf src fm) (import bu�er)

Import the bu�er buf from src, using the format fm. Returns #t on error and #f
otherwise.

(buffer-export buf dest fm) (export bu�er)

Export the bu�er buf to dest, using the format fm. Returns #t on error and #f
otherwise.

(tree-import src fm) (import a tree)

Import a tree from the URL src, using the format fm.

(tree-export t dest fm) (export a tree)

Export a tree to the URL dest, using the format fm.

4.3. Manipulating TEXMACS views

(view-list) (list of all views)

This routine returns the list of all available views, sorted by inverse chronological order.
That is, views which were selected more recently will occur earlier in the list.

(current-view) (current view)

Return the current view or #f.

4.3 Manipulating TEXMACS views 41

(view->buffer vw) (bu�er to which the view is attached)

This routine returns the bu�er to which the view vw is attached.

(view->window vw) (window to which the view is attached)

This routine returns the window in which the view vw is being displayed or #f.

(view-new buf)
(view-passive buf)
(view-recent buf) (get view on bu�er)

All three routines return a view on the bu�er buf. In the case of view-new, we system-
atically create a new view. The routine view-passive �rst attempts to �nd an existing
view on buf which is not attached to a window; if no such view exists, then a new one
is created. The last routine view-recent returns the most recent existing view, with a
preference for the current view, or another visible view. Again, a new view is created
if no suitable recent view exists.

4.4. Manipulating TEXMACS windows

(window-list) (list of all TEXMACS windows)

Return the list of all TEXMACS windows.

(current-window) (current window)

Return the current window. The program may abort if there exists no current window.

(window->buffer win) (bu�er displayed in window)

This routine returns the bu�er which is currently being displayed in the window win.
Warning: in the future, when a window will be allowed to contain multiple bu�ers, this
routine might be replaced by window->buffers.

(window->view win) (view displayed in window)

This routine returns the view which is currently being displayed in the window win.
Warning: in the future, when a window will be allowed to contain multiple views, this
routine might be replaced by window->views.

(window-set-buffer win buf) (show bu�er in window)

Display the bu�er buf in the window win.

(window-set-view win vw) (show view in window)

Display the view vw in the window win. The program may abort if the view was already
attached to another window.

(window-focus win) (focus window)

Set the current focus to the window win. The current implementation is still a bit
bugged and only correct if you want to execute a sequence of commands under the
assumption that win carries the focus and if you return the focus to the original window
at the end.

42 TEXMACS buffer management

(open-window) (create new window)

Create a new window with an empty bu�er and return the URL of the window.

(open-buffer-in-window buf cnt attrs) (No synopsis available)

Create a new window and set its main bu�er to that identi�ed by the URL buf. If buf
is not yet a valid bu�er, it is created and its contents set to cnt, otherwise the second
parameter is ignored. The window is created with its attributes set to attrs (currently
only the geometry is taken into account, but this might be extended in the future, see
the C++ function url new_window (bool map_flag= true, tree geom= ""))

4.4 Manipulating TEXMACS windows 43

Chapter 5
Scheme interface for the graphical mode

5.1. Low level graphics manipulation

Rationale.

TEXMACS provides a small low-level library for the manipulation of graphics on top of the
usual tree interface. One particularity of graphics operations is that they usually concern
a large number of continuous changes (as a function of mouse movement) to one or more
objects (under construction or being edited). On the one hand, this means that not all
movements have to be undoable. On the other hand, this implies that some optimizations
may be necessary to obtain a reasonable speed.

For these reasons, the library allows the programmer to focus attention on one or several
objects in a graphics and to quickly perform operations on these objects. Focus is mostly
understood to be temporary: typically, the focus is released as soon as an operation has
been completed, i.e. the construction of a polyline.

From the implementation point of view, the selected objects may either be removed from
the document (current implementation), or kept in the document (future implementation),
while displaying them on top of the other objects (if necessary).

De�nitions.

Tree. As in the main tree API. There are three main types of trees with graphical
markup: graphics, shapes and groups.

Enhanced tree. Trees with graphical markup can be enhanced to provide additional
properties for the markup by means of with tags. For instance, an "enhanced shape"
(see below) might be a polyline together with a particular color and line width.

Radical and properties. In the case of an enhanced tree of the form (with props*

object), object is called the radical of the enhanced tree and props* the properties
of the enhanced tree. Notice that an enhanced tree is allowed to be reduced to its
radical, in which case it has no properties.

Graphics. This term corresponds to the main graphics, which is an ordered list of
enhanced shapes or groups. Enhancements for the main graphics can be divided in
two categories:

� Global properties for the graphics itself, e.g. rendering properties, or a back-
ground grid.

� Editing properties, which control the current editing behaviour of the graphics
(polyline mode, current pen colour, etc.).

Shape. A shape is an atomic graphical markup primitive, such as a polyline. Typical
enhancements for shapes are pen color, �ll color, line width, arrow mode, etc.

45

Group. A group is an ordered list of enhanced shapes or groups. The possible enhance-
ments for groups are the same as the ones for shapes (and, in this respect, groups
therefore di�er from graphics).

Sketch. The current sketch corresponds to a single or ordered list of enhanced shapes
or groups on which the graphical editor is currently operating. There are two main
modes for the sketch:

SELECTING. the sketch corresponds to a selection of enhanced shapes or
groups in the main document.

MODIFYING. the sketch corresponds to a single or ordered list of enhanced
shapes or groups which are being constructed or modi�ed. The trees in the
sketch can be new trees or trees which correspond to marked (invisible) trees
in the main document.

The current sketch is usually displayed on top of all other graphics, together with
several control points.

Manipulation of enhanced trees.

(enhanced-tree->radical t) (get radical)

Given an enhanced tree t, return its radical.

(radical->enhanced-tree t) (get enhanced tree)

Given a radical t, �nd its parent which corresponds to its largest enhancement. If t
does not belong to a TeXmacs document, this routine returns #f.

(enhanced-tree-set! t p* u)
(enhanced-tree-ref t p*)
(enhanced-tree-arity t p*) (analogue of basic tree API)

These routines are similar to tree-set, tree-set!, etc. except that they operate on the
radical of the enhanced tree.

(enhanced-tree-properties-set! t l) (set properties)

Given an enhanced tree t, override its properties with the elements in the association
list l.

(enhanced-tree-properties-ref t) (get properties)

Obtain an association list with all properties of the enhanced tree t.

(enhanced-tree-property-set! t var val) (set enhanced property)

Set the property var of an enhanced tree t to val.

(enhanced-tree-property-ref t var) (get enhanced property)

Obtain the property var of an enhanced tree t.

Sketch manipulation.

(sketch-tree) (get current sketch)

Return the current sketch tree.

46 Scheme interface for the graphical mode

(sketch-new t) (start sketch)

Put a new tree in the sketch, which is not part of the document. This routine is typically
called when starting the construction of a new enhanced shape.

(sketch-set t) (set sketch tree)

Assign the sketch which a tree t which is part of the document (and maintain the
correspondence between t and the sketch). This routine is typically called when editing
an enhanced shape.

(sketch-reset) (reset sketch tree)

Assign the sketch with an empty group of objects. This routine is typically called before
starting the selection of a group of objects.

(sketch-toggle t) (toggle a tree in the sketch)

When the sketch is an enhanced group, this routine toggles whether a tree t in the
document belongs to the group (and we maintain the correspondence between t and
the corresponding subtree in the sketch). This routine is typically called when selecting
a group of objects.

(sketch-checkout) (checkout the sketch)

Enter MODIFYING mode and potentially disable the counterparts of the trees in the
sketch in the main document.

(sketch-commit) (commit the sketch)

Commit changes made to the sketch in MODIFYINGmode and return to SELECTING
mode.

(sketch-cancel) (cancel the sketch)

Cancel any changes made to the sketch in MODIFYING mode and return to the state
of the document before the call of sketch-checkout.

Miscellaneous.

(sketch-controls-set l) (set controls)

Assign a list of markup objects with control ornaments to the current sketch. The
ornaments are rendered on top of the sketch as a visual aid for the user. Typically,
when editing a polyline, l consists of a list of control points.

5.2. Graphics interface between C++ and Scheme

Rationale.

TEXMACS both implements a low-level part of the graphics in C++ and the high-level user
interface in Scheme. This API describes how both parts interact.

The low-level C++ mainly takes care of transforming the graphical markup in a typeset
box. It also provides routines for translating between physical coordinates (relative to the
window) into logical coordinates (the local coordinate system of the graphics) and routines
for interacting with the typeset boxes (�nding the closest objects to a given point or region
or projecting a point on a grid).

5.2 Graphics interface between C++ and Scheme 47

De�nitions.

Editor coordinates. The coordinates of the outermost typeset box. Mouse events
are typically passed in these coordinates. The corresponding data type is SI.

Graphics coordinates. The coordinates of the innermost graphics corresponding to
the current cursor position.

Grid. The current grid relative to the graphics for editing objects (this grid may
theoretically be di�erent from the grid which is displayed). The current grid consists
both of a mathematical type of grid (no grid, cartesian grid, polar grid, etc.),
together with special points which correspond either to control points, intersections
of curves with the grid, intersections of curves, or self-intersections of curves.

Grid point. A point on the grid is a triple (p distance type), where p is a point
in graphics coordinates, distance its distance to the point which was projected on
the grid (see grid-project below) and type the type of grid point with a potential
origin. For instance, type can be plain or something like (control t) for a control
point corresponding to the tree t in the document.

Coordinate transformations.

(editor->graphics p) (get graphics coordinates)

Transform a point p of the form (x y) from the editor coordinates into the graphics
coordinates.

(graphics->editor p) (get editor coordinates)

Transform a point p of the form (x y) from the graphics coordinates into the editor
coordinates.

Grid routines.

(grid-project p) (project point on grid)

Given a point p (in graphics coordinates), �nd its projection on the current grid, the
distance part of the projection being the distance between p and its projection.

Note: the routine grid-project can also be used in order to �nd editable shapes and
groups close to the current pointer position. Indeed, the corresponding control points
are understood to lie on the grid in our sense.

(grid-point-pertinence<? p q)
(grid-point-pertinence<=? p q) (order by pertinence)

Grid points are ordered by pertinence as a function of type and distance. For instance,
control points have higher pertinence than plain grid points and closer grid points are
considered better than farther ones.

Selection of shapes.

(graphics-find-disk p r) (search shapes in disk)

Return the list of all trees in the graphics which intersect a disk with center p and
radius r (in graphics coordinates).

48 Scheme interface for the graphical mode

(graphics-find-rectangle p q) (search shapes in rectangle)

Return the list of all trees in the graphics which intersect a rectangle with corners p
and q (in graphics coordinates).

Computations with shapes.

(box-info t) (get bounding box for a shape)

Get a bounding box (and other information) about a shape t. t can be a tree or a
scheme tree.

Remark 5.1. This section might be extended, since a lot of the graphical intelligence is
implemented in the C++ code. For instance, we might want to compute the intersections of
two curves inside the Scheme code. Also, when we will allow for user macros, we might want
routines which return the graphical expansion of the macro (the constituent elementary
shapes, i.e. polylines, splines, etc.).

5.2 Graphics interface between C++ and Scheme 49

Chapter 6
Extending the graphical user interface

Most of the user interface to TEXMACS is dynamically created from within the interpreted
Scheme code. New menus and buttons can be added, or the existing ones reused and
rearranged, even the main editor can be embedded anywhere.

Imagine you want to implement some feature which requires interaction with the user.
One possible approach is to use the facility interactive, which according to the user's
preferences will either popup a dialog or ask in the footer bar, based in metadata you
provide inside your tm-define'd function. See �Meta information and logical programming�
for more on this topic. However, automatically generated content is not always the best
approach, so you might want to explicitly design your interface placing it inside a compli-
cated dialog. The following sections should help you with this.

6.1. An introduction to widgets

In TEXMACS you create and extend the visual interface using widgets. This word means
either the basic building blocks you have at your disposal, like buttons, popup lists, etc.
or the collections of those into dialogs, menu bars or whatever. This rather loose concept
might be confusing, especially when we refer to what usually are know as dialogs as widgets,
but it makes sense because all sorts of widgets can be aggregated to build more complicated
ones as well.6.1

However, it must be kept in mind that items intended to be inserted in a menu bar won't
necessarily display as they do in a separate window: complicated aggregations of widgets
might be better placed in a separate window or dialogue, as explained in "Dialogs and
composite widgets".

A complete reference with all the available widgets is the "Widgets reference guide",
and you can �nd some examples in the other subsections of "Extending the graphical
user interface". If you'd rather see the sources, the whole list of keywords is in the table
gui-make-table inside menu-define.scm.

To create a widget, you'll �rst need to use tm-widget to de�ne a new one. The call to this
function uses its particular syntax, with many keywords for the creation of widgets. But
we'll start with some buttons and labels.

Execute the following two lines to get the unavoidable example and leave your mouse over
the �Hello� button.

Scheme] (tm-widget (example1) ("Hello" "world!"))

Scheme] (top-window example1 "A first try")

As you can see, buttons are implicitly created by simply writing a list with the button's
title and a tooltip to be displayed when the user hovers over the button. A bit confusing,
and also ugly, because this is intended for toolbar buttons. What you probably want is this:

6.1. If you miss some particular �building block� from your OS, you might see whether it's feasible as an aggregation
of simpler ones or try and play with the UI interface code in C++ (but you'll have to add it for every supported
platform!).

51

overview/overview-meta.en.tm
overview/overview-meta.en.tm
overview/overview-meta.en.tm
overview/overview-meta.en.tm
overview/overview-meta.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-reference.en.tm
gui/scheme-gui-reference.en.tm
gui/scheme-gui-reference.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
../../../progs/kernel/gui/menu-define.scm
../../../progs/kernel/gui/menu-define.scm
../../../progs/kernel/gui/menu-define.scm

Scheme] (tm-widget (example2) (explicit-buttons ("Hello" (noop))))

Scheme] (top-window example2 "A nicer button")

The second argument is now a Scheme command to be executed when the user clicks the
button, in this case a no-operation, or (noop). Try changing it for (display "World") or
anything that suits you.

The next step is to add some text next to the button, i.e. a label. This is done with the text
keyword, as in (text "Hello"), but in order to have both widgets sit side by side, you'll
need a container widget as described in "Containers, glue, refresh and co.", such as hlist:

Scheme] (tm-widget (example3)
(hlist
(text "Hello")
(explicit-buttons ("world" (display "!\n")))))

Scheme] (top-window example3 "Some text")

That was nice, but as you see, the two widgets are packed together until you resize the
window. We need to explicitly tell TEXMACS to insert some space between them:

Scheme] (tm-widget (example3)
(hlist
(text "Hello")
>>>
(explicit-buttons ("world" (display "!\n")))))

Scheme] (top-window example3 "Some text")

The special symbol >>> is just one of the prede�ned glue widgets described in "Containers,
glue, refresh and co.".

Text attributes may be changed for text widgets and many others by enclosing them
inside what we'll name style widgets. These attributes are mini, monospaced, grey, inert,
centered and bold, and respectively: reduce the size of the widget, choose a monospaced
font, set the color to grey, deactivate the widget (meaning it is rendered, but greyed out
and inactive), center it and choose a bold face. Here is an example:

Scheme] (tm-widget (example3)
(hlist
(bold (text "Hello"))
>>>
(inert (explicit-buttons ("world" (display "!\n"))))))

Scheme] (top-window example3 "Some text")

From here you can go on reading �Extending the graphical user interface� or see the sample
widgets in menu-test.scm.

6.2. Menus and toolbars

As we said before, menus are special collections of widgets:

Problems with toolbars, systemmenus, context menus... Menu containers: horizontal menu,
vertical menu. Separators.

52 Extending the graphical user interface

gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
gui/scheme-gui.en.tm
../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm

6.3. Displaying lists and trees

Displaying lists with eeeeeeeeennnnnnnnnuuuuuuuuummmmmmmmm, ccccccccchhhhhhhhhoooooooooiiiiiiiiiccccccccceeeeeeeee and ccccccccchhhhhhhhhoooooooooiiiiiiiiiccccccccceeeeeeeeesssssssss.
(enum cmd items default width) (a combo box)

Builds a combo box which will execute cmd whenever the user makes a choice. The
width may be given in any TEXMACS length unit.

Scheme] (tm-widget (test-enum)
(enum (display* "First " answer "\n")

'("gnu" "gnat" "zebra")
"zebra" "10em")))

Scheme] (show test-enum)

(choice cmd items default) (a list of items allowing one to be chosen)
Builds a list of items which will execute cmd whenever the user makes a choice. items
is a list, default a value. Contrary to enum, all items are displayed simultaneously.
If one desires scrollbars, the widget must be enclosed in a scrollable container. The
width of the widget may be set using a resize widget.

Scheme] (tm-widget (test-choice)
(resize "200px" "50px"
(scrollable
(choice (display* answer "\n")

'("First" "Second" "Third" "Fourth" "Fifth"
"Sixth")

"Third"))))

Scheme] (show test-choice)

(choices cmd items defaults) (a list of items allowing several to be chosen)
Builds a list of items which will execute cmd whenever the user makes a choice. Several
items may be selected at the same time. Both items and defaults are hence lists.
Contrary to enum, all items are displayed simultaneously. If one desires scrollbars, the
widget must be enclosed in a scrollable container. The width of the widget may be
set using a resize widget.

Scheme] (tm-widget (test-choices)
(resize "200px" "100px"
(scrollable
(choices (display* answer "\n")

'("A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L")
'("B" "D" "F" "H" "J" "L")))))

Scheme] (show test-choices)

Displaying trees with tttttttttrrrrrrrrreeeeeeeeeeeeeeeeee---------wwwwwwwwwiiiiiiiiidddddddddgggggggggeeeeeeeeettttttttt.
(tree-widget cmd data data-roles) (a tree view)

The tree-widget provides a graphical representation of a TEXMACS tree data (not a
Scheme tree!). This may be part of a document or any other tree. The �rst node in
data won't be displayed. All other nodes may have attributes called data roles which
will determine the textual representation of the node, whether it has some icon next
to it and which one, etc. These attributes are simply children of the nodes in data at
prede�ned positions given by the data roles speci�cation in the argument data-roles.
This is a list of identi�ers for each tree label present in the data. For instance, with the
following data roles speci�cation:

6.3 Displaying lists and trees 53

(list
(library DisplayRole DecorationRole UserRole:1)
(collection DisplayRole UserRole:1))

we use the data:

(root
(library "Library" "icon.png" 12345
(collection "Cool stuff" 001)
(collection "Things to read" 002)
(collection "Current work" 003
(collection "Forever current" 004)
(collection "Read me" 005))))

Notice that the node root won't be displayed by the tree-widget and needs no data
roles. Here UserRole:1 is used to store database ids but it can be anything else. The
supported data roles are:

DisplayRole ; a string to be displayed
EditRole ; a string valid for an editable representation
ToolTipRole ; a small tooltip to display when the mouse hovers
over
StatusTipRole ; for the status bar (if present and supported)
DecorationRole ; file name of an icon to use
CommandRole ; sent to the command executed after (double?) clicks
UserRole:<number> ; left to user definition (will be returned as
strings)

Default data roles. It is possible to omit some or all of the data role speci�cation.
By default the widget will use the tree label's string representation for DisplayRole,
EditRole, ToolTipRole and StatusTipRole. For the DecorationRole it will try to
load pixmaps named treelabel-<label>.xpm in $TEXMACS_PIXMAP_PATH. This search
won't happen if the DecorationRole is speci�ed (i.e. a full path with or without
environment variables and wildcards must be given). The default CommandRole is the
subtree itself (see below).

Using commands. The �rst argument of tree-widget, cmd, is a Scheme lambda
that will be called when items are clicked. The procedure must have the following
signature:

(lambda (Event CommandRole . UserRoles) (...))

where:

� Event is an integer: either 1, 2 or 4 for a single, right or middle click respectively.
In the future, other events could be supported (like double clicks, drag&drop,
unfold, etc.)

� CommandRole is either the value of that role if given for the data item, or the
subtree itself otherwise.

� UserRoles is a (possibly empty) list with the data for those roles given in the
data role speci�cation.

54 Extending the graphical user interface

If multiple selections are enabled and one is made, CommandRole and UserRole will
both be lists (not implemented yet). Keep in mind that the data is a TEXMACS tree and
thus not a copy but always a pointer to the actual data (unless you copy or transform
it into another format with e.g. tree->stree)

Examples. See widget10 in menu-test.scm and �Displaying lists and trees�.

An example using data roles.

We build on the previous example, but now we add a command. Notice how the way
one adds commands to tree-view departs from that of other widgets, where instead of a
procedure one must provide a list with code expecting one or two arguments with �xed
names (usually answer and filter). Note to self : this is easily changed in $tree-view,
but it seems easier to manage empty arguments this way.

Scheme] (define t
(stree->tree
'(root
(library "Library" "$TEXMACS_PIXMAP_PATH/tm_german.xpm" 01

(collection "Cool stuff" 001)
(collection "Things to read" 002)
(collection "Current work" 003

(collection "Forever current" 004)
(collection "Read me" 005))))))

Scheme] (define dd
(stree->tree
'(list (library DisplayRole DecorationRole UserRole:1)

(collection DisplayRole UserRole:1))))

Scheme] (define (action clicked cmd-role . user-roles)
(display* "clicked= " clicked ", cmd-role= " cmd-role

", user-roles= " user-roles "\n")))

Scheme] (tm-widget (widget-library)
(resize ("150px" "400px" "9000px") ("300px" "600px" "9000px")
(vertical
(bold (text "Testing tree-view"))
===
(tree-view action t dd))))

Scheme] (top-window widget-library "Tree View")

Notice how we must add $TEXMACS_PIXMAP_PATH to the name of the pixmap because we
are not using the default DecorationRole.

An example using the bu�er tree.

We can even use the buffer-tree as argument to tree-widget. Changes in the bu�er
will show up immediately in the widget. In this example we use the default data role
speci�cation.

Warning 6.1. As of this writing (31 Dec. 2013) the Qt implementation is sloppy and
forces a full reloading of the data model for each modification of the tree. The slowdown
is already noticeable with documents of a few pages like this one. Additionally, the current
selection in the widget is lost after each modi�cation to the bu�er (�xing this requires
writing a fully �edged observer and probably an intermediate copy of the data).

6.3 Displaying lists and trees 55

../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm
gui/scheme-gui-lists-trees.scm
gui/scheme-gui-lists-trees.scm
gui/scheme-gui-lists-trees.scm
gui/scheme-gui-lists-trees.scm

Scheme] (tm-widget (widget-buffer)
(resize ("150px" "400px" "9000px") ("300px" "600px" "9000px")
(vertical
(bold (text "Testing tree-view"))
===
(tree-view noop (buffer-tree) (stree->tree '(dummy))))))

Scheme] (top-window widget-buffer "Tree View")

An example with the side tools.

If your TEXMACS has the side tools enabled, you can try this:

Scheme] (tm-widget (texmacs-side-tools)
(vertical
(hlist (glue #t #f 15 0) (text "Document tree:") (glue #t #f 15

0))

(tree-view noop (buffer-tree) (stree->tree '(unused)))))

6.4. Dialogs and composite widgets

Dialogs are collections of widgets arranged in a window in order to perform a common task.
You might want to create one of this in order to con�gure or interact with a plugin: add
some con�guration options as well as some common actions and have the window always
open besides your document. A good example whose code might help is the preferences
dialog (open-preferences).

In order to create more complex layouts than those we did before you'll need a few con-
tainers. Among these are aligned and tabs, which we explain below. A very useful macro
which you'll be using often is dynamic: it allows you to embed one widget into another.

Let's see how you create a dialog. To get started here is one little example taken from
menu-test.scm:

Scheme] (tm-widget (widget1)
(centered
(aligned
(item (text "First:")
(toggle (display* "First " answer "\n") #f))

(item (text "Second:")
(toggle (display* "Second " answer "\n") #f)))))

The keyword centered is clear, just center whatever it contains, but aligned not so much:
it builds two column tables, with each row of type item. As you can see, each item takes
two arguments, which can be of any type.

The toggle is another example of a widget which triggers a Scheme command whenever
it's clicked, or toggled in this case. The second argument stands for the default state of
the toggle.

Again, in order to display this you create a top-window and give it a title.

Scheme] (top-window widget1 "Two toggle widgets")

You'll notice that the created window is too small and the title is not wholly displayed.
You can force it to be of a certain size using resize:

56 Extending the graphical user interface

../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm
../../../progs/kernel/gui/menu-test.scm

Scheme] (tm-widget (widget1)
(centered
(resize "500px" "200px"
(aligned
(item (text "First:")
(toggle (display* "First " answer "\n") #f))

(item (text "Second:")
(toggle (display* "Second " answer "\n") #f))))))

Scheme] (top-window widget1 "A bigger window")

resize is another of the several available container or content management widgets. It
accepts two sorts of arguments. Either one sets a �xed size for the widget with two strings,
as in the example above, or one passes two lists, the �rst for widths, the second for heights,
with the minimum, default and maximum values in that order, like this:

(resize ("100px" "200px" "400px") ("100px" "200px" "400px") (some-widget-
here))

This sets some-widget-here to have a default square size of 200x200 pixels.

If you want to add the usual buttons you use bottom-buttons like in the following example.
Notice that the widget now accepts one parameter cmd which will be called when the user
clicks the �Ok� button.

Scheme] (tm-widget (widget1-buttons cmd)
(centered
(aligned
(item (text "First:")
(toggle (display* "First " answer "\n") #f))

(item (text "Second:")
(toggle (display* "Second " answer "\n") #f))))

(bottom-buttons >> ("Ok" (cmd "Ok"))))

Since the widget now needs an argument, we must use another function to display it,
namely dialogue-window, which will also close the window after the button has been
clicked.

Scheme] (dialogue-window widget1-buttons (lambda (arg) (display* arg "\n"))
"Two toggles")

That special >> at the end of the widget inserts as before whitespace, but it stretches and
aligns the bottom-buttons to the right. This is just another example of a glue widget.

6.4.1. Composite widgets

Note that our second dialog, widget1-buttons is just a copy of widget1 with an extra
line at the end. We could have spared us the keystrokes in this way:

Scheme] (tm-widget (widget1-buttons-smarter cmd)
(dynamic (widget1))
(bottom-buttons >> ("Ok" (cmd "Ok"))))

Scheme] (dialogue-window widget1-buttons-smarter (lambda (arg) (display* arg
"\n")) "Two toggles")

6.4 Dialogs and composite widgets 57

gui/scheme-gui-container.en.tm
gui/scheme-gui-container.en.tm
gui/scheme-gui-container.en.tm
gui/scheme-gui-advanced.en.tm
gui/scheme-gui-advanced.en.tm

As you can see, the approach we've shown has a shortcoming: there's no way to access all
the values of the di�erent widgets in your dialog at the same time. Of course you can use
the function cmd passed to your widget to perform some computations, but in case you
need to retrieve or store complicated data, what you need is a form.

6.5. Forms

As explained in �Dialogs and composite widgets� the available widgets can be used to
compose dialog windows which perform one simple task. But sometimes one needs to read
complex input from the user and forms provide one mechanism to do this. They allow you
to de�ne multiple named �elds of several types, whose values are stored in a hash table.
The contents of this hash can be retrieved when the user clicks a button using the functions
form-fields and form-values.

In the following example you can see that the syntax is pretty much the same as for regular
widgets, but you must pre�x the keywords with form- :

Scheme] (tm-widget (form3 cmd)
(resize "500px" "500px"
(padded
(form "Test"
(aligned
(item (text "Input:")
(form-input "fieldname1" "string" '("one") "1w"))

(item === ===)
(item (text "Enum:")
(form-enum "fieldname2" '("one" "two" "three") "two"

"1w"))
(item === ===)
(item (text "Choice:")
(form-choice "fieldname3" '("one" "two" "three") "one"))

(item === ===)
(item (text "Choices:")
(form-choices "fieldname4"

'("one" "two" "three")
'("one" "two"))))

(bottom-buttons
("Cancel" (cmd "cancel")) >>
("Ok"
(display* (form-fields) " -> " (form-values) "\n")
(cmd "ok")))))))

Scheme] (dialogue-window form3 (lambda (x) (display* x "\n")) "Test of
form3")

A complete list of the widgets you can embed in a form is in the table gui-make-table
inside menu-define.scm.

6.6. Containers, glue, refresh and co.

6.6.1. Attribute widgets

In what follows widget can be anything de�ned using tm-widget.

58 Extending the graphical user interface

gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
gui/scheme-gui-dialogs.en.tm
../../../progs/kernel/gui/menu-define.scm
../../../progs/kernel/gui/menu-define.scm
../../../progs/kernel/gui/menu-define.scm

(centered widget) (centers widget)

This does just that: it centers widget with respect to the enclosing widget. Although we
are calling this an attribute, the e�ect is achieved by using a vertical list and a horizontal
one together with four glue widgets. This means that in the following example, the
�rst widget is actually expanded to something like the second one.

Scheme] (tm-widget (wid1)
(centered (text "I'm centered.")))

((guile-user) (guile-user))

Scheme] (tm-widget (wid2)
(vlist
(glue #f #f 0 10)
(hlist
(glue #t #f 25 0)
(text "I'm centered.")
(glue #t #f 25 0))

(glue #f #f 0 10)))

Scheme] (show wid1)

Scheme] (show wid2)

(resize (w1 w2 w3) (h1 h2 h3) wid)
(resize w h widget) (resizes widget)

These two variants resize the argument. The �rst one speci�es a minimum size of
w1�h1, a default size of w2�h2 and a maximum size of w3�h3. widget will be set to
the default size and will be allowed to resize but not beyond the bounds speci�ed. The
second alternative sets a �xed width and height.

Sizes are speci�ed as strings with a unit su�x, like in "150px".

Scheme] (tm-widget (wid)
(resize "200px" "70px" (text "I'm stuck!")))

Scheme] (show wid)

(padded widget) (surrounds widget by padding)

This sets some �xed padding around widget. As in the case of centered, the e�ect is
achieved by means of several widgets into which this macro expands. These are actually
the same as in the example there, but the glue widgets are all �xed (i.e. have all their
expansion parameters set to #f).

6.6.2. Container or layout widgets

You can arrange widgets horizontally or vertically, or in two column mode as in forms.
When running the QT version the latter will default to the OS standard for arranging
labels and their associated input widgets in dialogs. Other possibilities are splitters and
tabbed widgets. A very useful macro is dynamic, which allows you to embed one widget
into another.

(aligned items-list) (arranges items in a two column table)

6.6 Containers, glue, refresh and co. 59

(hlist widgets) (arranges items horizontally)

(vlist widgets) (arranges items vertically)

(hsplit (item (widget)) (item (widget)) ...) (arranges two items in a split panel)

(tabs (tab (widget)) (tab (widget)) ...) (a tabbed widget)

(dynamic (widget)) (embeds a tm-widget into another one)

6.6.3. Glue widgets

Besides laying out widgets in containers, you will often want to specify how they eat up
space around them when the user resizes the window. By default (most?) widgets take up
as much space as they can (i.e. they always expand) unless you used resize with them or
they can have their size set with a parameter. If you don't want this to happen you can
place invisible spacers around them which will (if you tell them to) gobble up as much as
they can, either vertically or horizontally or in both directions.

TEXMACS provides one such basic building block:

(glue horiz vert width height) (possibly expanding whitespace)

The �rst two parameters, horiz and vert, are of boolean type and specify whether
the glue widget will try to expand horizontally or vertically when its surroundings do.
The last two parameters, width height, either �x the size for non-expanding glue or
set a minimum one.

Scheme] (tm-widget (wid1)
(centered (text "I'm centered.")))

Scheme] (tm-widget (wid2)
(vlist
===
(hlist
(glue #t #f 25 0)
(text "I'm centered.")
(glue #t #f 25 0))

(glue #f #f 0 10)))

Scheme] (show wid1)

Scheme] (show wid2)

In addition to the basic glue widget, there are several convenience macros.

=== (vertical separator)

Expands to (glue #f #f 0 5).

60 Extending the graphical user interface

====== (big vertical separator)

Expands to (glue #f #f 0 15).

// (horizontal separator)

Expands to (glue #f #f 5 0).

/// (big horizontal separator)

Expands to (glue #f #f 15 0).

>> (expanding horizontal separator)

Expands to (glue #t #f 5 0).

>>> (big expanding horizontal separator)

Expands to (glue #t #f 15 0).

For the speci�c use in menus the following two macros are de�ned:

| (horizontal separator)

(A vertical bar)

--- (vertical separator)

(Three dashes)

6.6.4. Refresh widgets

Refresh widgets redraw their contents every time a command is executed. They achieve this
re-evaluating the code for the whole widget, so you can have new values in your variables...

6.7. Widgets reference guide

This should be a comprehensive list of all the widgets available to the user, following this
schema:

some-symbol (Some synopsis)

Some explanation.

An excerpt from progs/kernel/gui/menu-define.scm, as of SVN revision 5238:

(define-table gui-make-table

(eval ,gui-make-eval)

(dynamic ,gui-make-dynamic)

(former ,gui-make-former)

(link ,gui-make-link)

(let ,gui-make-let)

(let* ,gui-make-let)

(with ,gui-make-with)

6.7 Widgets reference guide 61

(receive ,gui-make-with)

(for ,gui-make-for)

(cond ,gui-make-cond)

(refresh ,gui-make-refresh)

(group ,gui-make-group)

(text ,gui-make-text)

(glue ,gui-make-glue)

(color ,gui-make-color)

(texmacs-output ,gui-make-texmacs-output)

(texmacs-input ,gui-make-texmacs-input)

(input ,gui-make-input)

(enum ,gui-make-enum)

(choice ,gui-make-choice)

(choices ,gui-make-choices)

(toggle ,gui-make-toggle)

(icon ,gui-make-icon)

(concat ,gui-make-concat)

(verbatim ,gui-make-verbatim)

(check ,gui-make-check)

(balloon ,gui-make-balloon)

(-> ,gui-make-submenu)

(=> ,gui-make-top-submenu)

(horizontal ,gui-make-horizontal)

(vertical ,gui-make-vertical)

(hlist ,gui-make-hlist)

(vlist ,gui-make-vlist)

(aligned ,gui-make-aligned)

(item ,gui-make-item)

(meti ,gui-make-meti)

(tabs ,gui-make-tabs)

(tab ,gui-make-tab)

(inert ,gui-make-inert)

(explicit-buttons ,gui-make-explicit-buttons)

(bold ,gui-make-bold)

(tile ,gui-make-tile)

(scrollable ,gui-make-scrollable)

62 Extending the graphical user interface

(resize ,gui-make-resize)

(hsplit ,gui-make-hsplit)

(vsplit ,gui-make-vsplit)

(minibar ,gui-make-minibar)

(extend ,gui-make-extend)

(padded ,gui-make-padded)

(centered ,gui-make-centered)

(bottom-buttons ,gui-make-bottom-buttons)

(assuming ,gui-make-assuming)

(if ,gui-make-if)

(when ,gui-make-when)

(mini ,gui-make-mini)

(symbol ,gui-make-symbol)

(promise ,gui-make-promise)

(ink ,gui-make-ink)

(form ,gui-make-form)

(form-input ,gui-make-form-input)

(form-enum ,gui-make-form-enum)

(form-choice ,gui-make-form-choice)

(form-choices ,gui-make-form-choices))

(tm-define (gui-make x)

;;(display* "x= " x "\n")

(cond ((symbol? x)

(cond ((== x '---) '$---)

((== x '===) (gui-make '(glue #f #f 0 5)))

((== x '======) (gui-make '(glue #f #f 0 15)))

((== x '/) '$/)

((== x '//) (gui-make '(glue #f #f 5 0)))

((== x '///) (gui-make '(glue #f #f 15 0)))

((== x '>>) (gui-make '(glue #t #f 5 0)))

((== x '>>>) (gui-make '(glue #t #f 15 0)))

((== x (string->symbol "|")) '$/)

(else

(texmacs-error "gui-make" "invalid menu item ~S" x))))

((string? x) x)

6.7 Widgets reference guide 63

((and (pair? x) (ahash-ref gui-make-table (car x)))

(apply (car (ahash-ref gui-make-table (car x))) (list x)))

((and (pair? x) (or (string? (car x)) (pair? (car x))))

`($> ,(gui-make (car x)) ,@(cdr x)))

(else

(texmacs-error "gui-make" "invalid menu item ~S" x))))

64 Extending the graphical user interface

Chapter 7

Writing TEXMACS bibliography styles

7.1. Introduction

TEXMACS admits support both for BibTEX and a native tool for managing bibliographies.
BibTEX styles are denoted by their usual names. TEXMACS styles are pre�xed by tm-. For
example, the TEXMACS tm-plain style is the replacement for the BibTEX plain style.
Equivalents for the following BibTEX styles have been implemented: abbrv, alpha, ieeetr,
plain et siam. These styles can therefore be used without installation of BibTEX.

New bibliography styles can be de�ned by the user. Each style is associated to a unique
Scheme �le, which should be added to the directory $TEXMACS_PATH/prog/bibtex. Style
�les are treated as regular Scheme programs. Since the creation of a style �le from scratch
is a complex task, we recommend you customize existing style �les or modules. In the
next sections, we will describe the creation of a new style on a simple example and give a
detailed lists of available Scheme functions which facilitate the creation of new styles.

7.2. Example of a simple bibliography style

Bibliographic style �les are stored in directory $TEXMACS_PATH/progs/bibtex. They have
the name of the style followed with extension .scm. For example, example.scm is the �le
name associated to the style example, which is denoted by tm-example when it is used in
a TEXMACS document.

All style �les must be declared as a module as follows:

(texmacs-module (bibtex example)
(:use (bibtex bib-utils)))

The module bib-utils contains all useful functions needed to write bibliographic styles.

All style �les must me declared as a bibliographic style as follows:

(bib-define-style "example" "plain")

The �rst argument to bib-define-style is the name of the current style. The second
argument is the name of a fall-back style, plain in our case. If a function is not de�ned
in current style, the function from the fall-back style is used instead. Hence, the following
minimalistic style �le behaves in an identical way as the plain style:

(texmacs-module (bibtex example)
(:use (bibtex bib-utils)))

(bib-define-style "example" "plain")

65

Each formatting function de�ned in the default style can be overloaded in the current style.
For example, the function bib-format-date is used to format the date in the plain style.
It is rede�nable in our example style as follows:

(tm-define (bib-format-date e)
(:mode bib-example?)
(bib-format-field e "year"))

All exported functions must be pre�xed with bib-. Overloaded functions must be followed
with directive (:mode bib-example?), in which example is the name of the current style.

Our complete example �le example.scm is as follows:

(texmacs-module (bibtex example)
(:use (bibtex bib-utils)))

(bib-define-style "example" "plain")

(tm-define (bib-format-date e)
(:mode bib-example?)
(bib-format-field e "year"))

It behaves in a similar way as the plain style, except that all dates are formatted according
to our custom routine.

7.3. Scheme functions for writing bibliography styles

7.3.1. Style management

(bib-define-style name default) (style declaration)

This function declares a style called name (string) with fall-back style default (string).
The style is selected by choosing tm-name when adding a bibliography to a document.
Whenever a formatting function is not de�ned in the current style, its de�nition in the
fall-back style is used as replacement.

(bib-with-style style expr) (local style)

This function evaluates expression expr as if the current style were style (string).

7.3.2. Field related routines

(bib-field entry field) (�eld data)

This function creates a TEXMACS tree corresponding to the �eld field (string) of entry
entry without format. In some cases, the output is special:

� If field is "author" or "editor", we return a tree with label bib-names fol-
lowed by a list of author names; each author name is a tree with label bib-name
containing four elements: �rst name, particule (von), last name and su�x (jr);

� If field is "page", then we return a list of integers: the empty list, or a singleton
with a page number, or a pair corresponding to a pages interval.

66 Writing TEXMACS bibliography styles

(bib-format-field entry field) (basic format)

This function creates a TEXMACS tree corresponding to the �eld field (string) of entry
entry, with basic format.

(bib-format-field-Locase entry field) (special format)

This function is similar to bib-format-field ; but �eld are formatted in lower case
with an upper case letter at the beginning.

(bib-empty? entry field) (null-test of a �eld)

This function returns boolean #t if the �eld field (string) of entry entry is empty or
absent; it returns #f in the other cases.

7.3.3. Routines for structuring the output

(bib-new-block tm) (new block)

This function creates aTEXMACS tree consisting of a block containing TEXMACS tree tm.

(bib-new-list sep ltm) (separated list)

This function creates a TEXMACS tree which is the concatenation of all the elements of
list ltm separated with TEXMACS tree sep.

(bib-new-list-spc ltm) (blank separated list)

This function is equivalent to the evaluation of (bib-new-list " " ltm).

(bib-new-sentence ltm) (new sentence)

This function creates a TEXMACS tree corresponding to a sentence containing all the
elements of list ltm separated by commas.

7.3.4. Routines for textual manipulations

(bib-abbreviate name dot spc) (name abbreviation)

This function creates a TEXMACS tree corresponding to the abbreviation of the name
contained in name TEXMACS tree: it retrieves the list of �rst letters of each word, followed
by dot (TEXMACS tree) and separated by spc (TEXMACS tree).

(bib-add-period tm) (dot)

This function creates a TEXMACS tree with a dot at the end of tm.

(bib-default tm) (default TEXMACS tree)

This function creates a TEXMACS tree without label keep-case.

(bib-emphasize tm) (italic)

This function creates a TEXMACS tree corresponding to the italic version of tm.

(bib-locase tm) (lower case)

This function creates a TEXMACS tree, which is equal to tm with all letters in lower case,
except for those within keep-case blocks.

7.3 Scheme functions for writing bibliography styles 67

(bib-prefix tm nbcar) (beginning of a TEXMACS tree)

This function returns a string containing the �rst nbcar characters of tm.

(bib-upcase tm) (upper case)

This function creates a TEXMACS tree, which is equal to tm with all letters in upper
case, except for those within keep-case blocks.

(bib-upcase-first tm) (upper case �rst letter)

This function creates a TEXMACS tree, which is equal to tm with its �rst letter in upper
case, except inside keep-case blocks.

7.3.5. Miscellaneous routines

(bib-null? v) (null-test)

This function returns boolean #t if value v is empty; it returns #f in the other cases.

(bib-purify tm) (�attening of a TEXMACS tree)

This function returns a string made of all letters of the TEXMACS tree tm.

(bib-simplify tm) (simpli�cation of a TEXMACS tree)

This function returns a TEXMACS tree corresponding to the simpli�cation of TEXMACS
tree tm.

(bib-text-length tm) (length of a TEXMACS tree)

This function returns the length of TEXMACS tree tm.

(bib-translate msg) (translation)

This function translates the string message msg from english into the current language.

68 Writing TEXMACS bibliography styles

Chapter 8
About the API documentation

Documentation for TEXMACS internal features and API is typically written as part of the
general documentation, where it's most natural for someone reading the manual as a book.
However it often happens that some Scheme module or procedure needs documenting but
doesn't �t into any of the available sections of the manual. The purpose of this section is
precisely to assemble all those pieces of information. Currently (jan. 2016) there are very
sketchy pages for:

8.1. The TEXMACS file system

The TEXMACS �le system is a complicated beast, with versioning, network access and
authentication built in among other things. This documentation should be completed with
all those features, but in the meantime, we have the following:

8.1.1. A tttttttttmmmmmmmmmfffffffffsssssssss primer

8.1.2. The TEXMACS �lesystem

Many things in TEXMACS can be referenced through a URI with tmfs as schema. Examples
of entities in this system are bu�ers, views and windows or at a higher level help bu�ers
and search results. A TEXMACS URI follows the format:

tmfs://handler[/query]

Requests to open URIs such as these are sent to a handler , which actually is a set of proce-
dures implementing the basic operations related to the type of content they handle: loading
the content, saving it (if possible or necessary), setting the window title and establishing
access permissions are the basic operations. Prede�ned handlers which the user usually
encounters are grep, help, history, revision and apidoc: they accept a query repre-
senting search strings, �les or help pages and render results in the appropriate language
into a new bu�er. The query is a string in the usual format variable1=value1&vari-
able2=value2. Its parsing can be done using query-ref.

Situations where using this system makes more sense than regular documents are for
instance documentation, which must be chosen from several languages and possibly be
compiled on the �y from various sources (see module doc.apidoc and related modules)
and automatically generated content, like that resulting from interacting from an external
system for version control of documents (see handler version in module version.version-
tmfs).

8.1.3. Implementing a handler

The de�nition of a handler is done via tmfs-handler or with the convenience macros
tmfs-load-handler, tmfs-save-handler, tmfs-permission-handler and tmfs-title-
handler.

69

tmfs://apidoc/type=module&what=doc.apidoc
tmfs://apidoc/type=module&what=version.version-tmfs
tmfs://apidoc/type=module&what=version.version-tmfs
tmfs://apidoc/type=module&what=version.version-tmfs

Below we'll implement a basic load handler named simple which will accept two sorts
of arguments: type and what. We shall use two procedures, one to handle the requests,
another to create the document.

Scheme] (tm-define (simple-load header body)
`(document

(TeXmacs ,(texmacs-version))
(style (tuple "generic"))
(body (document (section ,header) ,body))))

As you can see, we don't do much other than creating a TEXMACS document. The load
handler won't be complicated either. We only parse the query string with the help of
query-ref and then display one of three possible bu�ers.

Scheme] (tmfs-load-handler (simple qry)
(let ((type (query-ref qry "type"))

(what (query-ref qry "what")))
(tm->stree
(cond ((== type "very") (simple-load "Very simple" what))

((== type "totally") (simple-load "Totally simple"
what))

(else (simple-load "Error"
(string-append "Query unknown: " what)))))))

We can test this right away with:

Scheme] (load-buffer "tmfs://simple/type=very&what=example")

Or embedded in a document using tags like hlink and branch: click here to test it.

You can set read/write permissions implementing a permission handler , and the window's
title using a title handler :

Scheme] (tmfs-permission-handler (simple name type)
(display* "Name= " name "\nType= " type "\n")
#t)

Scheme] (tmfs-title-handler (simple qry doc) "Simple handler - Some title
here")

(tmfs-load-handler (name qry) body) (de�ne load handler for @name)

A load handler for name is invoked when TEXMACS receives a request to open a URI of
type tmfs://name/qry. The body of the handler is passed qry as parameter (see query-
ref) and must return a complete TEXMACS bu�er. Consider the following example:

(tmfs-load-handler (id qry)
`(document

(TeXmacs ,(texmacs-version))
(style (tuple "generic"))
(body (document ,qry))))

This will open URIs with the format tmfs://id/whatever_arguments.

Creation of the buffer contents may be simplified using the procedures defined in module
kernel.gui.gui-markup.

(tmfs-save-handler (name qry doc) body) (de�ne save handler for name)

A save handler is invoked when the user tries to save a bu�er of type tmfs://name/
... See also tmfs-load-handler and others.

70 About the API documentation

tmfs://simple/type=very&what=example
tmfs://simple/type=very&what=example
tmfs://simple/type=very&what=example
tmfs://simple/type=very&what=example
tmfs://simple/type=very&what=example
tmfs://sapi/type=module&what=kernel.gui.gui-markup
tmfs://sapi/type=module&what=kernel.gui.gui-markup
tmfs://sapi/type=module&what=kernel.gui.gui-markup

(tmfs-title-handler (name qry doc) body) (de�ne title handler name)

A title handler is invoked to build the title for a window displaying a bu�er of type
tmfs://name/... It is expected to return a simple string in the right language for the
user.

(tmfs-permission-handler (name qry kind) body) (de�ne master handler name)

A permissions handler decides whether the bu�er corresponding to the query made to
the handler may be loaded/saved, etc. kind may take one of the values "load", (...)

(tmfs-master-handler (name qry doc) body) (de�ne title handler name)

Amaster handler is... (possibly related to the concept of master document in a project,
but this needs checking)

(query-ref qry arg) (return value of parameter arg in query qry)

Given a qry string of type variable1=value1&variable2=value2, query-ref will
return value1 for an arg value of value1, etc.

8.1.4. Installing the handler

In order to make your handler available from any menu item or document upon startup,
you must add it to the initialization process, that is to init-texmacs.scm or my-init-
texmacs.scm, using the macro lazy-tmfs-handler. This will delay loading of your code
either until it is required or TEXMACS is idle waiting for user input.

Remark 8.1. The keywords buffer, view and window may not be used as names for
handlers since they are used internally by TEXMACS.

(lazy-tmfs-handler module handler) (lazily install a tmfs handler)

Inform TEXMACS that handler is available in module module. module must be a
list of symbols (like (kernel gui gui-markup)) representing the Scheme module
where you'll have de�ned your handler using tmfs-handler or with the convenience
macros tmfs-load-handler, tmfs-save-handler, tmfs-permission-handler and
tmfs-title-handler.

8.2. The URL system

There is currently no comprehensive documentation for the url system. In the meantime,
we'll collect here documentation for procedures related to it.

8.2.1. Navigation

(go-to-url u . opt-from) (Jump to the url @u)

Opens a new bu�er with the contents of the resource at u. This can be either a full
URL or a �le path, absolute or relative to the current buffer-master. Both types of
argument accept parameters. The second, optional argument, is an optional path for
the cursor history.

8.2 The URL system 71

You can pass parameters in u in two ways: appending a hash # and some text, like
in some/path/some-file.tm#blah will open the �le and jump to the �rst label of
name blah found, if any. The other possibility is the usual way in the web: append a
question mark ? followed by pairs parameter=value. Currently the parameters line,
column and select, which respectively jump to the chosen location and select the given
text at that line, are supported by default for any �le of format generic-file. (see
define-format).

8.2.2. Predicates

(url-concat? u) (No synopsis available)

(url-or? u) (No synopsis available)

(url-rooted? u) (Test whether @u is absolute)

Return #t if the url is absolute. Absolute urls may be for instance full paths in the �le
system or internet URLs starting with a protocol speci�cation like ftp or http. The
tmfs urls are also understood to be rooted. See also url-rooted-tmfs?, url-rooted-
web? and .

(url-descends? u1 u2) (Test whether @u1 is a parent for @u2 ?)

(url-regular? u) (Test whether the url refers to regular �le)

Applies only to �lesystem urls. Returns #t if the url is a regular �le, #f otherwise. See
also url-directory? and url-link?.

(url-directory? u) (Test whether the url refers to a directory)

Applies only to �lesystem urls. Returns #t if the url is a directory, #f otherwise.

(url-link? u) (Test whether the url refers to a symbolic link)

Applies only to �lesystem urls. Returns #t if the url is a symbolic link, #f otherwise.

8.3. Notification and download of updates

As of svn revision 7196, TEXMACS supports automatic noti�cation of available downloads
from a repository and their installation using the Sparkle framework for MacOS and
WinSparkle under Windows.

In order to guarantee the origin of releases, these must be signed with a DSA key, whose
public part will be bundled with the application. On the server side a so-called appcast
must be updated for each release. It is an xml �le containing information about avail-
able downloads, their contents and their digital signatures, following the speci�cation for
Sparkle/WinSparkle. For the moment we refer to Sparkle's documentation for more
details.

In principle it should be easy for anyone to release their custom versions of TEXMACS and
let their users autoupdate them with a simple change in the con�g �les. For this they only
need provide the public key and the url of the appcast.

72 About the API documentation

8.3.1. Operating system speci�cs

Under MacOS the process of creation of the appcast is partially automated through the
make build rule MACOS_RELEASE. Calling make MACOS_RELEASE will compile and bundle
TEXMACS, then zip and �nally digitally sign the resulting TeXmacs-*.app.zip with the
script admin/misc/sign_update. In order for this to work, one has to set the environment
variable TEXMACS_PRIVATE_DSA to point to the location of the private DSA key used to sign
releases. At the end of the build process a chunk of XML is printed that can be pasted in
the appcast.xml �le.

Under Windows digital signatures are not yet supported by WinSparkle and as such
will be ignored (Aug. 2013).

There is no support for automatic noti�cation of releases under Linux yet. Automatic
download and installation is unlikely to happen due to the way packaging systems work
for most distributions.

8.3.2. Client side interface

(check-updates-background) (check for updates in the background)

Start a background check for updates. A dialog box pops up only if there's an update.
Con�guration variables must be properly set for this call to work. In particular, the
appcast url must be set via the preference "updater:appcast".

(check-updates-foreground) (check for updates in the foreground)

Start a check for updates immediately popping up a dialog with the progress. This call
is non-blocking at least with Sparkle and WinSparkle since they run in separate
threads.

(check-updates-interval integer) (sets the update interval)

Sets the interval in hours to wait between automatic checks if these are activated
via "updater:automatic-checks". Note that this does not alter the value of the
preference "updater:interval", whose use is preferred.

(check-updates-interval boolean) (sets the update interval)

Tells TEXMACS whether to automatically check for updates. Note that this does not
alter the value of the preference "updater:automatic-checks", whose use is preferred.

The following preferences determine the behaviour of the automatic update system:

("updater:appcast" url) (preference)

The url to the appcast which will be used by the startup check. An empty or unde�ned
value will deactivate both automatic and manual checks.

("updater:automatic-checks" boolean) (preference)

Whether TEXMACS should automatically look for updates in the background (some
time) after startup. Use "updater:check-interval" to set the number of hours to
wait between checks.

("updater:check-interval" integer) (preference)

How often should TEXMACS look for updates? The interval is given in hours, with
a minimum of one. Setting this to zero deactivates automatic checks by setting
"updater:automatic-checks" to false.

8.3 Notification and download of updates 73

("updater:public-dsa-key" url) (preference)

The �le with the public DSA key to use to verify the digital signature of releases. This
feature is currently (Aug. 2013) only supported under MacOS, but the preference
value is ignored: Sparkle will use the value set in the SUPublicDSAKeyFile key in the
application bundle's Info.plist dictionary.

8.4. All glue functions

This document lists all available Scheme functions that are implemented in the C++ code
and which, consequently, are neither de�ned nor documented in the Scheme modules.
Ideally each of these functions should be documented elsewhere in the documentation.

This document was generated automatically from the glue code de�nitions by the script
src/src/Scheme/Glue/make-apidoc-doc.scm in TEXMACS source code.

(texmacs-version-release string) (no synopsis)

Calls the C++ function texmacs_version which returns string.

(version-before? string string) (no synopsis)

Calls the C++ function version_inf which returns bool.

(updater-supported?) (no synopsis)

Calls the C++ function updater_supported which returns bool.

(updater-running?) (no synopsis)

Calls the C++ function updater_is_running which returns bool.

(updater-check-background) (no synopsis)

Calls the C++ function updater_check_background which returns bool.

(updater-check-foreground) (no synopsis)

Calls the C++ function updater_check_foreground which returns bool.

(updater-last-check) (no synopsis)

Calls the C++ function updater_last_check which returns long.

(updater-set-appcast url) (no synopsis)

Calls the C++ function updater_set_appcast which returns bool.

(updater-set-interval int) (no synopsis)

Calls the C++ function updater_set_interval which returns bool.

(updater-set-automatic bool) (no synopsis)

Calls the C++ function updater_set_automatic which returns bool.

(get-original-path) (no synopsis)

Calls the C++ function get_original_path which returns string.

74 About the API documentation

(os-win32?) (no synopsis)

Calls the C++ function os_win32 which returns bool.

(os-mingw?) (no synopsis)

Calls the C++ function os_mingw which returns bool.

(os-macos?) (no synopsis)

Calls the C++ function os_macos which returns bool.

(has-printing-cmd?) (no synopsis)

Calls the C++ function has_printing_cmd which returns bool.

(x-gui?) (no synopsis)

Calls the C++ function gui_is_x which returns bool.

(qt-gui?) (no synopsis)

Calls the C++ function gui_is_qt which returns bool.

(default-look-and-feel) (no synopsis)

Calls the C++ function default_look_and_feel which returns string.

(default-chinese-font) (no synopsis)

Calls the C++ function default_chinese_font_name which returns string.

(default-japanese-font) (no synopsis)

Calls the C++ function default_japanese_font_name which returns string.

(default-korean-font) (no synopsis)

Calls the C++ function default_korean_font_name which returns string.

(get-retina-factor) (no synopsis)

Calls the C++ function get_retina_factor which returns int.

(get-retina-icons) (no synopsis)

Calls the C++ function get_retina_icons which returns int.

(get-retina-scale) (no synopsis)

Calls the C++ function get_retina_scale which returns double.

(set-retina-factor int) (no synopsis)

Calls the C++ function set_retina_factor which returns void.

(set-retina-icons int) (no synopsis)

Calls the C++ function set_retina_icons which returns void.

(set-retina-scale double) (no synopsis)

Calls the C++ function set_retina_scale which returns void.

8.4 All glue functions 75

(tm-output string) (no synopsis)

Calls the C++ function tm_output which returns void.

(tm-errput string) (no synopsis)

Calls the C++ function tm_errput which returns void.

(win32-display string) (no synopsis)

Calls the C++ function win32_display which returns void.

(cpp-error) (no synopsis)

Calls the C++ function cpp_error which returns void.

(supports-native-pdf?) (no synopsis)

Calls the C++ function supports_native_pdf which returns bool.

(supports-ghostscript?) (no synopsis)

Calls the C++ function supports_ghostscript which returns bool.

(rescue-mode?) (no synopsis)

Calls the C++ function in_rescue_mode which returns bool.

(scheme-dialect) (no synopsis)

Calls the C++ function scheme_dialect which returns string.

(get-texmacs-path) (no synopsis)

Calls the C++ function get_texmacs_path which returns url.

(get-texmacs-home-path) (no synopsis)

Calls the C++ function get_texmacs_home_path which returns url.

(plugin-list) (no synopsis)

Calls the C++ function plugin_list which returns scheme_tree.

(set-fast-environments bool) (no synopsis)

Calls the C++ function set_fast_environments which returns void.

(font-exists-in-tt? string) (no synopsis)

Calls the C++ function tt_font_exists which returns bool.

(eval-system string) (no synopsis)

Calls the C++ function eval_system which returns string.

(var-eval-system string) (no synopsis)

Calls the C++ function var_eval_system which returns string.

(evaluate-system array_string array_int array_string array_int) (no syn-
opsis)

Calls the C++ function evaluate_system which returns array_string.

76 About the API documentation

(get-locale-language) (no synopsis)

Calls the C++ function get_locale_language which returns string.

(get-locale-charset) (no synopsis)

Calls the C++ function get_locale_charset which returns string.

(locale-to-language string) (no synopsis)

Calls the C++ function locale_to_language which returns string.

(language-to-locale string) (no synopsis)

Calls the C++ function language_to_locale which returns string.

(texmacs-time) (no synopsis)

Calls the C++ function texmacs_time which returns int.

(pretty-time int) (no synopsis)

Calls the C++ function pretty_time which returns string.

(texmacs-memory) (no synopsis)

Calls the C++ function mem_used which returns int.

(bench-print string) (no synopsis)

Calls the C++ function bench_print which returns void.

(bench-print-all) (no synopsis)

Calls the C++ function bench_print which returns void.

(system-wait string string) (no synopsis)

Calls the C++ function system_wait which returns void.

(get-show-kbd) (no synopsis)

Calls the C++ function get_show_kbd which returns bool.

(set-show-kbd bool) (no synopsis)

Calls the C++ function set_show_kbd which returns void.

(set-latex-command string) (no synopsis)

Calls the C++ function set_latex_command which returns void.

(set-bibtex-command string) (no synopsis)

Calls the C++ function set_bibtex_command which returns void.

(number-latex-errors url) (no synopsis)

Calls the C++ function number_latex_errors which returns int.

(number-latex-pages url) (no synopsis)

Calls the C++ function number_latex_pages which returns int.

8.4 All glue functions 77

(math-symbol-group string) (no synopsis)

Calls the C++ function math_symbol_group which returns string.

(math-group-members string) (no synopsis)

Calls the C++ function math_group_members which returns array_string.

(math-symbol-type string) (no synopsis)

Calls the C++ function math_symbol_type which returns string.

(object->command object) (no synopsis)

Calls the C++ function as_command which returns command.

(exec-delayed object) (no synopsis)

Calls the C++ function exec_delayed which returns void.

(exec-delayed-pause object) (no synopsis)

Calls the C++ function exec_delayed_pause which returns void.

(protected-call object) (no synopsis)

Calls the C++ function protected_call which returns void.

(notify-preferences-booted) (no synopsis)

Calls the C++ function notify_preferences_booted which returns void.

(cpp-has-preference? string) (no synopsis)

Calls the C++ function has_user_preference which returns bool.

(cpp-get-preference string string) (no synopsis)

Calls the C++ function get_user_preference which returns string.

(cpp-set-preference string string) (no synopsis)

Calls the C++ function set_user_preference which returns void.

(cpp-reset-preference string) (no synopsis)

Calls the C++ function reset_user_preference which returns void.

(save-preferences) (no synopsis)

Calls the C++ function save_user_preferences which returns void.

(get-default-printing-command) (no synopsis)

Calls the C++ function get_printing_default which returns string.

(set-input-language string) (no synopsis)

Calls the C++ function set_input_language which returns void.

(get-input-language) (no synopsis)

Calls the C++ function get_input_language which returns string.

78 About the API documentation

(set-output-language string) (no synopsis)

Calls the C++ function gui_set_output_language which returns void.

(get-output-language) (no synopsis)

Calls the C++ function get_output_language which returns string.

(translate content) (no synopsis)

Calls the C++ function translate which returns string.

(string-translate string) (no synopsis)

Calls the C++ function translate_as_is which returns string.

(translate-from-to content string string) (no synopsis)

Calls the C++ function translate which returns string.

(tree-translate content) (no synopsis)

Calls the C++ function tree_translate which returns tree.

(tree-translate-from-to content string string) (no synopsis)

Calls the C++ function tree_translate which returns tree.

(force-load-translations string string) (no synopsis)

Calls the C++ function force_load_dictionary which returns void.

(color string) (no synopsis)

Calls the C++ function named_color which returns int.

(get-hex-color string) (no synopsis)

Calls the C++ function get_hex_color which returns string.

(named-color->xcolormap string) (no synopsis)

Calls the C++ function named_color_to_xcolormap which returns string.

(new-author) (no synopsis)

Calls the C++ function new_author which returns double.

(set-author double) (no synopsis)

Calls the C++ function set_author which returns void.

(get-author) (no synopsis)

Calls the C++ function get_author which returns double.

(debug-set string bool) (no synopsis)

Calls the C++ function debug_set which returns void.

(debug-get string) (no synopsis)

Calls the C++ function debug_get which returns bool.

8.4 All glue functions 79

(debug-message string string) (no synopsis)

Calls the C++ function debug_message which returns void.

(get-debug-messages string int) (no synopsis)

Calls the C++ function get_debug_messages which returns tree.

(clear-debug-messages) (no synopsis)

Calls the C++ function clear_debug_messages which returns void.

(cout-buffer) (no synopsis)

Calls the C++ function cout_buffer which returns void.

(cout-unbuffer) (no synopsis)

Calls the C++ function cout_unbuffer which returns string.

(mark-new) (no synopsis)

Calls the C++ function new_marker which returns double.

(glyph-register string array_array_array_double) (no synopsis)

Calls the C++ function register_glyph which returns void.

(glyph-recognize array_array_array_double) (no synopsis)

Calls the C++ function recognize_glyph which returns string.

(set-new-fonts bool) (no synopsis)

Calls the C++ function set_new_fonts which returns void.

(new-fonts?) (no synopsis)

Calls the C++ function get_new_fonts which returns bool.

(tmtm-eqnumber->nonumber tree) (no synopsis)

Calls the C++ function eqnumber_to_nonumber which returns tree.

(busy-versioning?) (no synopsis)

Calls the C++ function is_busy_versioning which returns bool.

(players-set-elapsed tree double) (no synopsis)

Calls the C++ function players_set_elapsed which returns void.

(players-set-speed tree double) (no synopsis)

Calls the C++ function players_set_speed which returns void.

(apply-effect content array_url url int int) (no synopsis)

Calls the C++ function apply_effect which returns void.

(tt-exists? string) (no synopsis)

Calls the C++ function tt_font_exists which returns bool.

80 About the API documentation

(tt-dump url) (no synopsis)

Calls the C++ function tt_dump which returns void.

(tt-font-name url) (no synopsis)

Calls the C++ function tt_font_name which returns scheme_tree.

(tt-analyze string) (no synopsis)

Calls the C++ function tt_analyze which returns array_string.

(font-database-build url) (no synopsis)

Calls the C++ function font_database_build which returns void.

(font-database-build-local) (no synopsis)

Calls the C++ function font_database_build_local which returns void.

(font-database-extend-local url) (no synopsis)

Calls the C++ function font_database_extend_local which returns void.

(font-database-build-global) (no synopsis)

Calls the C++ function font_database_build_global which returns void.

(font-database-build-characteristics bool) (no synopsis)

Calls the C++ function font_database_build_characteristics which returns void.

(font-database-insert-global url) (no synopsis)

Calls the C++ function font_database_build_global which returns void.

(font-database-save-local-delta) (no synopsis)

Calls the C++ function font_database_save_local_delta which returns void.

(font-database-load) (no synopsis)

Calls the C++ function font_database_load which returns void.

(font-database-save) (no synopsis)

Calls the C++ function font_database_save which returns void.

(font-database-filter) (no synopsis)

Calls the C++ function font_database_filter which returns void.

(font-database-families) (no synopsis)

Calls the C++ function font_database_families which returns array_string.

(font-database-delta-families) (no synopsis)

Calls theC++ function font_database_delta_familieswhich returns array_string.

(font-database-styles string) (no synopsis)

Calls the C++ function font_database_styles which returns array_string.

(font-database-search string string) (no synopsis)

Calls the C++ function font_database_search which returns array_string.

8.4 All glue functions 81

(font-database-characteristics string string) (no synopsis)

Calls the C++ function font_database_characteristics which returns
array_string.

(font-database-substitutions string) (no synopsis)

Calls the C++ function font_database_substitutions which returns scheme_tree.

(font-family->master string) (no synopsis)

Calls the C++ function family_to_master which returns string.

(font-master->families string) (no synopsis)

Calls the C++ function master_to_families which returns array_string.

(font-master-features string) (no synopsis)

Calls the C++ function master_features which returns array_string.

(font-family-features string) (no synopsis)

Calls the C++ function family_features which returns array_string.

(font-family-strict-features string) (no synopsis)

Calls the C++ function family_strict_features which returns array_string.

(font-style-features string) (no synopsis)

Calls the C++ function style_features which returns array_string.

(font-guessed-features string string) (no synopsis)

Calls the C++ function guessed_features which returns array_string.

(font-guessed-distance string string string string) (no synopsis)

Calls the C++ function guessed_distance which returns double.

(font-master-guessed-distance string string) (no synopsis)

Calls the C++ function guessed_distance which returns double.

(font-family-guessed-features string bool) (no synopsis)

Calls the C++ function guessed_features which returns array_string.

(characteristic-distance array_string array_string) (no synopsis)

Calls the C++ function characteristic_distance which returns double.

(trace-distance string string double) (no synopsis)

Calls the C++ function trace_distance which returns double.

(logical-font-public string string) (no synopsis)

Calls the C++ function logical_font which returns array_string.

(logical-font-exact string string) (no synopsis)

Calls the C++ function logical_font_exact which returns array_string.

82 About the API documentation

(logical-font-private string string string string) (no synopsis)

Calls the C++ function logical_font which returns array_string.

(logical-font-family array_string) (no synopsis)

Calls the C++ function get_family which returns string.

(logical-font-variant array_string) (no synopsis)

Calls the C++ function get_variant which returns string.

(logical-font-series array_string) (no synopsis)

Calls the C++ function get_series which returns string.

(logical-font-shape array_string) (no synopsis)

Calls the C++ function get_shape which returns string.

(logical-font-search array_string) (no synopsis)

Calls the C++ function search_font which returns array_string.

(logical-font-search-exact array_string) (no synopsis)

Calls the C++ function search_font_exact which returns array_string.

(search-font-families array_string) (no synopsis)

Calls the C++ function search_font_families which returns array_string.

(search-font-styles string array_string) (no synopsis)

Calls the C++ function search_font_styles which returns array_string.

(logical-font-patch array_string array_string) (no synopsis)

Calls the C++ function patch_font which returns array_string.

(logical-font-substitute array_string) (no synopsis)

Calls the C++ function apply_substitutions which returns array_string.

(font-family-main string) (no synopsis)

Calls the C++ function main_family which returns string.

(image->psdoc url) (no synopsis)

Calls the C++ function image_to_psdoc which returns string.

(anim-control-times content) (no synopsis)

Calls the C++ function get_control_times which returns array_double.

(tree->stree tree) (no synopsis)

Calls the C++ function tree_to_scheme_tree which returns scheme_tree.

(stree->tree scheme_tree) (no synopsis)

Calls the C++ function scheme_tree_to_tree which returns tree.

8.4 All glue functions 83

(tree->string tree) (no synopsis)

Calls the C++ function coerce_tree_string which returns string.

(string->tree string) (no synopsis)

Calls the C++ function coerce_string_tree which returns tree.

(tm->tree content) (no synopsis)

Calls the C++ function tree which returns tree.

(tree-atomic? tree) (no synopsis)

Calls the C++ function is_atomic which returns bool.

(tree-compound? tree) (no synopsis)

Calls the C++ function is_compound which returns bool.

(tree-label tree) (no synopsis)

Calls the C++ function L which returns tree_label.

(tree-children tree) (no synopsis)

Calls the C++ function A which returns array_tree.

(tree-arity tree) (no synopsis)

Calls the C++ function N which returns int.

(tree-child-ref tree int) (no synopsis)

Calls the C++ function tree_ref which returns tree.

(tree-child-set! tree int content) (no synopsis)

Calls the C++ function tree_set which returns tree.

(tree-child-insert content int content) (no synopsis)

Calls the C++ function tree_child_insert which returns tree.

(tree-ip tree) (no synopsis)

Calls the C++ function obtain_ip which returns path.

(tree-active? tree) (no synopsis)

Calls the C++ function tree_active which returns bool.

(tree-eq? tree tree) (no synopsis)

Calls the C++ function strong_equal which returns bool.

(subtree tree path) (no synopsis)

Calls the C++ function subtree which returns tree.

(tree-range tree int int) (no synopsis)

Calls the C++ function tree_range which returns tree.

84 About the API documentation

(tree-copy tree) (no synopsis)

Calls the C++ function copy which returns tree.

(tree-append tree tree) (no synopsis)

Calls the C++ function tree_append which returns tree.

(tree-right-index tree) (no synopsis)

Calls the C++ function right_index which returns int.

(tree-label-extension? tree_label) (no synopsis)

Calls the C++ function is_extension which returns bool.

(tree-label-macro? tree_label) (no synopsis)

Calls the C++ function is_macro which returns bool.

(tree-label-parameter? tree_label) (no synopsis)

Calls the C++ function is_parameter which returns bool.

(tree-label-type tree_label) (no synopsis)

Calls the C++ function get_tag_type which returns string.

(tree-multi-paragraph? tree) (no synopsis)

Calls the C++ function is_multi_paragraph which returns bool.

(tree-simplify tree) (no synopsis)

Calls the C++ function simplify_correct which returns tree.

(tree-minimal-arity tree) (no synopsis)

Calls the C++ function minimal_arity which returns int.

(tree-maximal-arity tree) (no synopsis)

Calls the C++ function maximal_arity which returns int.

(tree-possible-arity? tree int) (no synopsis)

Calls the C++ function correct_arity which returns bool.

(tree-insert_point tree int) (no synopsis)

Calls the C++ function insert_point which returns int.

(tree-is-dynamic? tree) (no synopsis)

Calls the C++ function is_dynamic which returns bool.

(tree-accessible-child? tree int) (no synopsis)

Calls the C++ function is_accessible_child which returns bool.

(tree-accessible-children tree) (no synopsis)

Calls the C++ function accessible_children which returns array_tree.

8.4 All glue functions 85

(tree-all-accessible? content) (no synopsis)

Calls the C++ function all_accessible which returns bool.

(tree-none-accessible? content) (no synopsis)

Calls the C++ function none_accessible which returns bool.

(tree-name content) (no synopsis)

Calls the C++ function get_name which returns string.

(tree-long-name content) (no synopsis)

Calls the C++ function get_long_name which returns string.

(tree-child-name content int) (no synopsis)

Calls the C++ function get_child_name which returns string.

(tree-child-long-name content int) (no synopsis)

Calls the C++ function get_child_long_name which returns string.

(tree-child-type content int) (no synopsis)

Calls the C++ function get_child_type which returns string.

(tree-child-env* content int content) (no synopsis)

Calls the C++ function get_env_child which returns tree.

(tree-child-env content int string content) (no synopsis)

Calls the C++ function get_env_child which returns tree.

(tree-descendant-env* content path content) (no synopsis)

Calls the C++ function get_env_descendant which returns tree.

(tree-descendant-env content path string content) (no synopsis)

Calls the C++ function get_env_descendant which returns tree.

(tree-load-inclusion url) (no synopsis)

Calls the C++ function load_inclusion which returns tree.

(tree-as-string content) (no synopsis)

Calls the C++ function tree_as_string which returns string.

(tree-extents content) (no synopsis)

Calls the C++ function tree_extents which returns tree.

(tree-empty? content) (no synopsis)

Calls the C++ function is_empty which returns bool.

(tree-multi-line? content) (no synopsis)

Calls the C++ function is_multi_line which returns bool.

(tree-is-buffer? tree) (no synopsis)

Calls the C++ function admits_edit_observer which returns bool.

86 About the API documentation

(tree-search-sections tree) (no synopsis)

Calls the C++ function search_sections which returns array_tree.

(tree-search-tree content content path int) (no synopsis)

Calls the C++ function search which returns array_path.

(tree-search-tree-at content content path path int) (no synopsis)

Calls the C++ function search which returns array_path.

(tree-spell string content path int) (no synopsis)

Calls the C++ function spell which returns array_path.

(tree-spell-at string content path path int) (no synopsis)

Calls the C++ function spell which returns array_path.

(tree-spell-selection string content path path path int) (no synopsis)

Calls the C++ function spell which returns array_path.

(previous-search-hit array_path path bool) (no synopsis)

Calls the C++ function previous_search_hit which returns array_path.

(next-search-hit array_path path bool) (no synopsis)

Calls the C++ function next_search_hit which returns array_path.

(navigate-search-hit path bool bool bool) (no synopsis)

Calls the C++ function navigate_search_hit which returns array_path.

(tag-minimal-arity tree_label) (no synopsis)

Calls the C++ function minimal_arity which returns int.

(tag-maximal-arity tree_label) (no synopsis)

Calls the C++ function maximal_arity which returns int.

(tag-possible-arity? tree_label int) (no synopsis)

Calls the C++ function correct_arity which returns bool.

(set-access-mode int) (no synopsis)

Calls the C++ function set_access_mode which returns int.

(get-access-mode) (no synopsis)

Calls the C++ function get_access_mode which returns int.

(tree-assign tree content) (no synopsis)

Calls the C++ function tree_assign which returns tree.

(tree-var-insert tree int content) (no synopsis)

Calls the C++ function tree_insert which returns tree.

8.4 All glue functions 87

(tree-remove tree int int) (no synopsis)

Calls the C++ function tree_remove which returns tree.

(tree-split tree int int) (no synopsis)

Calls the C++ function tree_split which returns tree.

(tree-join tree int) (no synopsis)

Calls the C++ function tree_join which returns tree.

(tree-assign-node tree tree_label) (no synopsis)

Calls the C++ function tree_assign_node which returns tree.

(tree-insert-node tree int content) (no synopsis)

Calls the C++ function tree_insert_node which returns tree.

(tree-remove-node tree int) (no synopsis)

Calls the C++ function tree_remove_node which returns tree.

(cpp-tree-correct-node tree) (no synopsis)

Calls the C++ function correct_node which returns void.

(cpp-tree-correct-downwards tree) (no synopsis)

Calls the C++ function correct_downwards which returns void.

(cpp-tree-correct-upwards tree) (no synopsis)

Calls the C++ function correct_upwards which returns void.

(concat-tokenize-math content) (no synopsis)

Calls the C++ function concat_tokenize which returns array_tree.

(concat-decompose content) (no synopsis)

Calls the C++ function concat_decompose which returns array_tree.

(concat-recompose array_tree) (no synopsis)

Calls the C++ function concat_recompose which returns tree.

(with-like? content) (no synopsis)

Calls the C++ function is_with_like which returns bool.

(with-same-type? content content) (no synopsis)

Calls the C++ function with_same_type which returns bool.

(with-similar-type? content content) (no synopsis)

Calls the C++ function with_similar_type which returns bool.

(with-correct content) (no synopsis)

Calls the C++ function with_correct which returns tree.

88 About the API documentation

(with-correct-superfluous content) (no synopsis)

Calls the C++ function superfluous_with_correct which returns tree.

(invisible-correct-superfluous content) (no synopsis)

Calls the C++ function superfluous_invisible_correct which returns tree.

(invisible-correct-missing content int) (no synopsis)

Calls the C++ function missing_invisible_correct which returns tree.

(automatic-correct content string) (no synopsis)

Calls the C++ function automatic_correct which returns tree.

(manual-correct content) (no synopsis)

Calls the C++ function manual_correct which returns tree.

(tree-upgrade-brackets content string) (no synopsis)

Calls the C++ function upgrade_brackets which returns tree.

(tree-upgrade-big content) (no synopsis)

Calls the C++ function upgrade_big which returns tree.

(tree-downgrade-brackets content bool bool) (no synopsis)

Calls the C++ function downgrade_brackets which returns tree.

(tree-downgrade-big content) (no synopsis)

Calls the C++ function downgrade_big which returns tree.

(math-status-print) (no synopsis)

Calls the C++ function math_status_print which returns void.

(math-status-reset) (no synopsis)

Calls the C++ function math_status_reset which returns void.

(path-strip path path) (no synopsis)

Calls the C++ function strip which returns path.

(path-inf? path path) (no synopsis)

Calls the C++ function path_inf which returns bool.

(path-inf-eq? path path) (no synopsis)

Calls the C++ function path_inf_eq which returns bool.

(path-less? path path) (no synopsis)

Calls the C++ function path_less which returns bool.

(path-less-eq? path path) (no synopsis)

Calls the C++ function path_less_eq which returns bool.

8.4 All glue functions 89

(path-start content path) (no synopsis)

Calls the C++ function start which returns path.

(path-end content path) (no synopsis)

Calls the C++ function end which returns path.

(path-next content path) (no synopsis)

Calls the C++ function next_valid which returns path.

(path-previous content path) (no synopsis)

Calls the C++ function previous_valid which returns path.

(path-next-word content path) (no synopsis)

Calls the C++ function next_word which returns path.

(path-previous-word content path) (no synopsis)

Calls the C++ function previous_word which returns path.

(path-next-node content path) (no synopsis)

Calls the C++ function next_node which returns path.

(path-previous-node content path) (no synopsis)

Calls the C++ function previous_node which returns path.

(path-next-tag content path scheme_tree) (no synopsis)

Calls the C++ function next_tag which returns path.

(path-previous-tag content path scheme_tree) (no synopsis)

Calls the C++ function previous_tag which returns path.

(path-next-tag-same-argument content path scheme_tree) (no synopsis)

Calls the C++ function next_tag_same_argument which returns path.

(path-previous-tag-same-argument content path scheme_tree) (no synopsis)

Calls the C++ function previous_tag_same_argument which returns path.

(path-next-argument content path) (no synopsis)

Calls the C++ function next_argument which returns path.

(path-previous-argument content path) (no synopsis)

Calls the C++ function previous_argument which returns path.

(path-previous-section content path) (no synopsis)

Calls the C++ function previous_section which returns path.

(make-modification string path content) (no synopsis)

Calls the C++ function make_modification which returns modification.

90 About the API documentation

(modification-assign path content) (no synopsis)

Calls the C++ function mod_assign which returns modification.

(modification-insert path int content) (no synopsis)

Calls the C++ function mod_insert which returns modification.

(modification-remove path int int) (no synopsis)

Calls the C++ function mod_remove which returns modification.

(modification-split path int int) (no synopsis)

Calls the C++ function mod_split which returns modification.

(modification-join path int) (no synopsis)

Calls the C++ function mod_join which returns modification.

(modification-assign-node path tree_label) (no synopsis)

Calls the C++ function mod_assign_node which returns modification.

(modification-insert-node path int content) (no synopsis)

Calls the C++ function mod_insert_node which returns modification.

(modification-remove-node path int) (no synopsis)

Calls the C++ function mod_remove_node which returns modification.

(modification-set-cursor path int content) (no synopsis)

Calls the C++ function mod_set_cursor which returns modification.

(modification-kind modification) (no synopsis)

Calls the C++ function get_type which returns string.

(modification-path modification) (no synopsis)

Calls the C++ function get_path which returns path.

(modification-tree modification) (no synopsis)

Calls the C++ function get_tree which returns tree.

(modification-root modification) (no synopsis)

Calls the C++ function root which returns path.

(modification-index modification) (no synopsis)

Calls the C++ function index which returns int.

(modification-argument modification) (no synopsis)

Calls the C++ function argument which returns int.

(modification-label modification) (no synopsis)

Calls the C++ function L which returns tree_label.

(modification-copy modification) (no synopsis)

Calls the C++ function copy which returns modification.

8.4 All glue functions 91

(modification-applicable? content modification) (no synopsis)

Calls the C++ function is_applicable which returns bool.

(modification-apply content modification) (no synopsis)

Calls the C++ function var_clean_apply which returns tree.

(modification-inplace-apply tree modification) (no synopsis)

Calls the C++ function var_apply which returns tree.

(modification-invert modification content) (no synopsis)

Calls the C++ function invert which returns modification.

(modification-commute? modification modification) (no synopsis)

Calls the C++ function commute which returns bool.

(modification-can-pull? modification modification) (no synopsis)

Calls the C++ function can_pull which returns bool.

(modification-pull modification modification) (no synopsis)

Calls the C++ function pull which returns modification.

(modification-co-pull modification modification) (no synopsis)

Calls the C++ function co_pull which returns modification.

(patch-pair modification modification) (no synopsis)

Calls the C++ function patch which returns patch.

(patch-compound array_patch) (no synopsis)

Calls the C++ function patch which returns patch.

(patch-branch array_patch) (no synopsis)

Calls the C++ function branch_patch which returns patch.

(patch-birth double bool) (no synopsis)

Calls the C++ function patch which returns patch.

(patch-author double patch) (no synopsis)

Calls the C++ function patch which returns patch.

(patch-pair? patch) (no synopsis)

Calls the C++ function is_modification which returns bool.

(patch-compound? patch) (no synopsis)

Calls the C++ function is_compound which returns bool.

(patch-branch? patch) (no synopsis)

Calls the C++ function is_branch which returns bool.

(patch-birth? patch) (no synopsis)

Calls the C++ function is_birth which returns bool.

92 About the API documentation

(patch-author? patch) (no synopsis)

Calls the C++ function is_author which returns bool.

(patch-arity patch) (no synopsis)

Calls the C++ function N which returns int.

(patch-ref patch int) (no synopsis)

Calls the C++ function access which returns patch.

(patch-direct patch) (no synopsis)

Calls the C++ function get_modification which returns modification.

(patch-inverse patch) (no synopsis)

Calls the C++ function get_inverse which returns modification.

(patch-get-birth patch) (no synopsis)

Calls the C++ function get_birth which returns bool.

(patch-get-author patch) (no synopsis)

Calls the C++ function get_author which returns double.

(patch-copy patch) (no synopsis)

Calls the C++ function copy which returns patch.

(patch-applicable? patch content) (no synopsis)

Calls the C++ function is_applicable which returns bool.

(patch-apply content patch) (no synopsis)

Calls the C++ function var_clean_apply which returns tree.

(patch-inplace-apply tree patch) (no synopsis)

Calls the C++ function var_apply which returns tree.

(patch-compactify patch) (no synopsis)

Calls the C++ function compactify which returns patch.

(patch-cursor-hint patch content) (no synopsis)

Calls the C++ function cursor_hint which returns path.

(patch-invert patch content) (no synopsis)

Calls the C++ function invert which returns patch.

(patch-commute? patch patch) (no synopsis)

Calls the C++ function commute which returns bool.

(patch-can-pull? patch patch) (no synopsis)

Calls the C++ function can_pull which returns bool.

8.4 All glue functions 93

(patch-pull patch patch) (no synopsis)

Calls the C++ function pull which returns patch.

(patch-co-pull patch patch) (no synopsis)

Calls the C++ function co_pull which returns patch.

(patch-remove-set-cursor patch) (no synopsis)

Calls the C++ function remove_set_cursor which returns patch.

(patch-modifies? patch) (no synopsis)

Calls the C++ function does_modify which returns bool.

(tree->ids tree) (no synopsis)

Calls the C++ function get_ids which returns list_string.

(id->trees string) (no synopsis)

Calls the C++ function get_trees which returns list_tree.

(vertex->links content) (no synopsis)

Calls the C++ function get_links which returns list_tree.

(tree->tree-pointer tree) (no synopsis)

Calls the C++ function tree_pointer_new which returns observer.

(tree-pointer-detach observer) (no synopsis)

Calls the C++ function tree_pointer_delete which returns void.

(tree-pointer->tree observer) (no synopsis)

Calls the C++ function obtain_tree which returns tree.

(current-link-types) (no synopsis)

Calls the C++ function all_link_types which returns list_string.

(get-locus-rendering string) (no synopsis)

Calls the C++ function get_locus_rendering which returns string.

(set-locus-rendering string string) (no synopsis)

Calls the C++ function set_locus_rendering which returns void.

(declare-visited string) (no synopsis)

Calls the C++ function declare_visited which returns void.

(has-been-visited? string) (no synopsis)

Calls the C++ function has_been_visited which returns bool.

(graphics-set content content) (no synopsis)

Calls the C++ function set_graphical_value which returns void.

94 About the API documentation

(graphics-has? content) (no synopsis)

Calls the C++ function has_graphical_value which returns bool.

(graphics-ref content) (no synopsis)

Calls the C++ function get_graphical_value which returns tree.

(graphics-needs-update?) (no synopsis)

Calls the C++ function graphics_needs_update which returns bool.

(graphics-notify-update content) (no synopsis)

Calls the C++ function graphics_notify_update which returns void.

(string-number? string) (no synopsis)

Calls the C++ function is_double which returns bool.

(string-occurs? string string) (no synopsis)

Calls the C++ function occurs which returns bool.

(string-count-occurrences string string) (no synopsis)

Calls the C++ function count_occurrences which returns int.

(string-search-forwards string int string) (no synopsis)

Calls the C++ function search_forwards which returns int.

(string-search-backwards string int string) (no synopsis)

Calls the C++ function search_backwards which returns int.

(string-overlapping string string) (no synopsis)

Calls the C++ function overlapping which returns int.

(string-replace string string string) (no synopsis)

Calls the C++ function replace which returns string.

(string-alpha? string) (no synopsis)

Calls the C++ function is_alpha which returns bool.

(string-locase-alpha? string) (no synopsis)

Calls the C++ function is_locase_alpha which returns bool.

(upcase-first string) (no synopsis)

Calls the C++ function upcase_first which returns string.

(locase-first string) (no synopsis)

Calls the C++ function locase_first which returns string.

(upcase-all string) (no synopsis)

Calls the C++ function upcase_all which returns string.

8.4 All glue functions 95

(locase-all string) (no synopsis)

Calls the C++ function locase_all which returns string.

(string-union string string) (no synopsis)

Calls the C++ function string_union which returns string.

(string-minus string string) (no synopsis)

Calls the C++ function string_minus which returns string.

(escape-generic string) (no synopsis)

Calls the C++ function escape_generic which returns string.

(escape-verbatim string) (no synopsis)

Calls the C++ function escape_verbatim which returns string.

(escape-shell string) (no synopsis)

Calls the C++ function escape_sh which returns string.

(escape-to-ascii string) (no synopsis)

Calls the C++ function cork_to_ascii which returns string.

(unescape-guile string) (no synopsis)

Calls the C++ function unescape_guile which returns string.

(string-quote string) (no synopsis)

Calls the C++ function scm_quote which returns string.

(string-unquote string) (no synopsis)

Calls the C++ function scm_unquote which returns string.

(string-trim-spaces-left string) (no synopsis)

Calls the C++ function trim_spaces_left which returns string.

(string-trim-spaces-right string) (no synopsis)

Calls the C++ function trim_spaces_right which returns string.

(string-trim-spaces string) (no synopsis)

Calls the C++ function trim_spaces which returns string.

(downgrade-math-letters string) (no synopsis)

Calls the C++ function downgrade_math_letters which returns string.

(string-convert string string string) (no synopsis)

Calls the C++ function convert which returns string.

(encode-base64 string) (no synopsis)

Calls the C++ function encode_base64 which returns string.

96 About the API documentation

(decode-base64 string) (no synopsis)

Calls the C++ function decode_base64 which returns string.

(sourcecode->cork string) (no synopsis)

Calls the C++ function sourcecode_to_cork which returns string.

(cork->sourcecode string) (no synopsis)

Calls the C++ function cork_to_sourcecode which returns string.

(utf8->cork string) (no synopsis)

Calls the C++ function utf8_to_cork which returns string.

(cork->utf8 string) (no synopsis)

Calls the C++ function cork_to_utf8 which returns string.

(utf8->t2a string) (no synopsis)

Calls the C++ function utf8_to_t2a which returns string.

(t2a->utf8 string) (no synopsis)

Calls the C++ function t2a_to_utf8 which returns string.

(utf8->html string) (no synopsis)

Calls the C++ function utf8_to_html which returns string.

(guess-wencoding string) (no synopsis)

Calls the C++ function guess_wencoding which returns string.

(tm->xml-name string) (no synopsis)

Calls the C++ function tm_to_xml_name which returns string.

(old-tm->xml-cdata string) (no synopsis)

Calls the C++ function old_tm_to_xml_cdata which returns string.

(tm->xml-cdata string) (no synopsis)

Calls the C++ function tm_to_xml_cdata which returns object.

(xml-name->tm string) (no synopsis)

Calls the C++ function xml_name_to_tm which returns string.

(old-xml-cdata->tm string) (no synopsis)

Calls the C++ function old_xml_cdata_to_tm which returns string.

(xml-unspace string bool bool) (no synopsis)

Calls the C++ function xml_unspace which returns string.

(integer->hexadecimal int) (no synopsis)

Calls the C++ function as_hexadecimal which returns string.

(integer->padded-hexadecimal int int) (no synopsis)

Calls the C++ function as_hexadecimal which returns string.

8.4 All glue functions 97

(hexadecimal->integer string) (no synopsis)

Calls the C++ function from_hexadecimal which returns int.

(cpp-string-tokenize string string) (no synopsis)

Calls the C++ function tokenize which returns array_string.

(cpp-string-recompose array_string string) (no synopsis)

Calls the C++ function recompose which returns string.

(string-differences string string) (no synopsis)

Calls the C++ function differences which returns array_int.

(string-distance string string) (no synopsis)

Calls the C++ function distance which returns int.

(find-left-bracket path string string) (no synopsis)

Calls the C++ function find_left_bracket which returns path.

(find-right-bracket path string string) (no synopsis)

Calls the C++ function find_right_bracket which returns path.

(string->tmstring string) (no synopsis)

Calls the C++ function tm_encode which returns string.

(tmstring->string string) (no synopsis)

Calls the C++ function tm_decode which returns string.

(tmstring-length string) (no synopsis)

Calls the C++ function tm_string_length which returns int.

(tmstring-ref string int) (no synopsis)

Calls the C++ function tm_forward_access which returns string.

(tmstring-reverse-ref string int) (no synopsis)

Calls the C++ function tm_backward_access which returns string.

(tmstring->list string) (no synopsis)

Calls the C++ function tm_tokenize which returns array_string.

(list->tmstring array_string) (no synopsis)

Calls the C++ function tm_recompose which returns string.

(string-next string int) (no synopsis)

Calls the C++ function tm_char_next which returns int.

(string-previous string int) (no synopsis)

Calls the C++ function tm_char_previous which returns int.

98 About the API documentation

(tmstring-split string) (no synopsis)

Calls the C++ function tm_string_split which returns array_string.

(tmstring-translit string) (no synopsis)

Calls the C++ function uni_translit which returns string.

(tmstring-locase-first string) (no synopsis)

Calls the C++ function uni_locase_first which returns string.

(tmstring-upcase-first string) (no synopsis)

Calls the C++ function uni_upcase_first which returns string.

(tmstring-locase-all string) (no synopsis)

Calls the C++ function uni_locase_all which returns string.

(tmstring-upcase-all string) (no synopsis)

Calls the C++ function uni_upcase_all which returns string.

(tmstring-unaccent-all string) (no synopsis)

Calls the C++ function uni_unaccent_all which returns string.

(tmstring-letter? string) (no synopsis)

Calls the C++ function uni_is_letter which returns bool.

(tmstring-before? string string) (no synopsis)

Calls the C++ function uni_before which returns bool.

(multi-spell-start) (no synopsis)

Calls the C++ function spell_start which returns void.

(multi-spell-done) (no synopsis)

Calls the C++ function spell_done which returns void.

(single-spell-start string) (no synopsis)

Calls the C++ function spell_start which returns string.

(single-spell-done string) (no synopsis)

Calls the C++ function spell_done which returns void.

(spell-check string string) (no synopsis)

Calls the C++ function spell_check which returns tree.

(spell-check? string string) (no synopsis)

Calls the C++ function check_word which returns bool.

(spell-accept string string) (no synopsis)

Calls the C++ function spell_accept which returns void.

8.4 All glue functions 99

(spell-var-accept string string bool) (no synopsis)

Calls the C++ function spell_accept which returns void.

(spell-insert string string) (no synopsis)

Calls the C++ function spell_insert which returns void.

(packrat-define string string tree) (no synopsis)

Calls the C++ function packrat_define which returns void.

(packrat-property string string string string) (no synopsis)

Calls the C++ function packrat_property which returns void.

(packrat-inherit string string) (no synopsis)

Calls the C++ function packrat_inherit which returns void.

(packrat-parse string string content) (no synopsis)

Calls the C++ function packrat_parse which returns path.

(packrat-correct? string string content) (no synopsis)

Calls the C++ function packrat_correct which returns bool.

(packrat-context string string content path) (no synopsis)

Calls the C++ function packrat_context which returns object.

(syntax-read-preferences string) (no synopsis)

Calls the C++ function initialize_color_decodings which returns void.

(parse-texmacs string) (no synopsis)

Calls the C++ function texmacs_document_to_tree which returns tree.

(serialize-texmacs tree) (no synopsis)

Calls the C++ function tree_to_texmacs which returns string.

(parse-texmacs-snippet string) (no synopsis)

Calls the C++ function texmacs_to_tree which returns tree.

(serialize-texmacs-snippet tree) (no synopsis)

Calls the C++ function tree_to_texmacs which returns string.

(texmacs->stm tree) (no synopsis)

Calls the C++ function tree_to_scheme which returns string.

(stm->texmacs string) (no synopsis)

Calls the C++ function scheme_document_to_tree which returns tree.

(stm-snippet->texmacs string) (no synopsis)

Calls the C++ function scheme_to_tree which returns tree.

100 About the API documentation

(cpp-texmacs->verbatim tree bool string) (no synopsis)

Calls the C++ function tree_to_verbatim which returns string.

(cpp-verbatim-snippet->texmacs string bool string) (no synopsis)

Calls the C++ function verbatim_to_tree which returns tree.

(cpp-verbatim->texmacs string bool string) (no synopsis)

Calls the C++ function verbatim_document_to_tree which returns tree.

(parse-latex string) (no synopsis)

Calls the C++ function parse_latex which returns tree.

(parse-latex-document string) (no synopsis)

Calls the C++ function parse_latex_document which returns tree.

(latex->texmacs tree) (no synopsis)

Calls the C++ function latex_to_tree which returns tree.

(cpp-latex-document->texmacs string bool) (no synopsis)

Calls the C++ function latex_document_to_tree which returns tree.

(latex-class-document->texmacs string) (no synopsis)

Calls the C++ function latex_class_document_to_tree which returns tree.

(tracked-latex->texmacs string bool) (no synopsis)

Calls the C++ function tracked_latex_to_texmacs which returns tree.

(conservative-texmacs->latex content object) (no synopsis)

Calls the C++ function conservative_texmacs_to_latex which returns string.

(tracked-texmacs->latex content object) (no synopsis)

Calls the C++ function tracked_texmacs_to_latex which returns string.

(conservative-latex->texmacs string bool) (no synopsis)

Calls the C++ function conservative_latex_to_texmacs which returns tree.

(get-line-number string int) (no synopsis)

Calls the C++ function get_line_number which returns int.

(get-column-number string int) (no synopsis)

Calls the C++ function get_column_number which returns int.

(try-latex-export content object url url) (no synopsis)

Calls the C++ function try_latex_export which returns tree.

(parse-xml string) (no synopsis)

Calls the C++ function parse_xml which returns scheme_tree.

8.4 All glue functions 101

(parse-html string) (no synopsis)

Calls the C++ function parse_html which returns scheme_tree.

(parse-bib string) (no synopsis)

Calls the C++ function parse_bib which returns tree.

(conservative-bib-import string content string) (no synopsis)

Calls the C++ function conservative_bib_import which returns tree.

(conservative-bib-export content string content) (no synopsis)

Calls the C++ function conservative_bib_export which returns string.

(upgrade-tmml scheme_tree) (no synopsis)

Calls the C++ function tmml_upgrade which returns tree.

(upgrade-mathml content) (no synopsis)

Calls the C++ function upgrade_mathml which returns tree.

(vernac->texmacs string) (no synopsis)

Calls the C++ function vernac_to_tree which returns tree.

(vernac-document->texmacs string) (no synopsis)

Calls the C++ function vernac_document_to_tree which returns tree.

(compute-keys-string string string) (no synopsis)

Calls the C++ function compute_keys which returns array_string.

(compute-keys-tree content string) (no synopsis)

Calls the C++ function compute_keys which returns array_string.

(compute-keys-url url) (no synopsis)

Calls the C++ function compute_keys which returns array_string.

(compute-index-string string string) (no synopsis)

Calls the C++ function compute_index which returns scheme_tree.

(compute-index-tree content string) (no synopsis)

Calls the C++ function compute_index which returns scheme_tree.

(compute-index-url url) (no synopsis)

Calls the C++ function compute_index which returns scheme_tree.

(url->url url) (no synopsis)

Calls the C++ function url which returns url.

(root->url string) (no synopsis)

Calls the C++ function url_root which returns url.

102 About the API documentation

(string->url string) (no synopsis)

Calls the C++ function url which returns url.

(url->string url) (no synopsis)

Calls the C++ function as_string which returns string.

(url->stree url) (no synopsis)

Calls the C++ function as_tree which returns scheme_tree.

(system->url string) (no synopsis)

Calls the C++ function url_system which returns url.

(url->system url) (no synopsis)

Calls the C++ function as_system_string which returns string.

(unix->url string) (no synopsis)

Calls the C++ function url_unix which returns url.

(url->unix url) (no synopsis)

Calls the C++ function as_unix_string which returns string.

(url-unix string string) (no synopsis)

Calls the C++ function url which returns url.

(url-none) (no synopsis)

Calls the C++ function url_none which returns url.

(url-any) (no synopsis)

Calls the C++ function url_wildcard which returns url.

(url-wildcard string) (no synopsis)

Calls the C++ function url_wildcard which returns url.

(url-pwd) (no synopsis)

Calls the C++ function url_pwd which returns url.

(url-parent) (no synopsis)

Calls the C++ function url_parent which returns url.

(url-ancestor) (no synopsis)

Calls the C++ function url_ancestor which returns url.

(url-append url url) (no synopsis)

Calls the C++ function url_concat which returns url.

(url-or url url) (no synopsis)

Calls the C++ function url_or which returns url.

8.4 All glue functions 103

(url-none? url) (no synopsis)

Calls the C++ function is_none which returns bool.

(url-rooted? url) (no synopsis)

Calls the C++ function is_rooted which returns bool.

(url-rooted-protocol? url string) (no synopsis)

Calls the C++ function is_rooted which returns bool.

(url-rooted-web? url) (no synopsis)

Calls the C++ function is_rooted_web which returns bool.

(url-rooted-tmfs? url) (no synopsis)

Calls the C++ function is_rooted_tmfs which returns bool.

(url-rooted-tmfs-protocol? url string) (no synopsis)

Calls the C++ function is_rooted_tmfs which returns bool.

(url-root url) (no synopsis)

Calls the C++ function get_root which returns string.

(url-unroot url) (no synopsis)

Calls the C++ function unroot which returns url.

(url-atomic? url) (no synopsis)

Calls the C++ function is_atomic which returns bool.

(url-concat? url) (no synopsis)

Calls the C++ function is_concat which returns bool.

(url-or? url) (no synopsis)

Calls the C++ function is_or which returns bool.

(url-ref url int) (no synopsis)

Calls the C++ function url_ref which returns url.

(url-head url) (no synopsis)

Calls the C++ function head which returns url.

(url-tail url) (no synopsis)

Calls the C++ function tail which returns url.

(url-format url) (no synopsis)

Calls the C++ function file_format which returns string.

(url-suffix url) (no synopsis)

Calls the C++ function suffix which returns string.

104 About the API documentation

(url-basename url) (no synopsis)

Calls the C++ function basename which returns string.

(url-glue url string) (no synopsis)

Calls the C++ function glue which returns url.

(url-unglue url int) (no synopsis)

Calls the C++ function unglue which returns url.

(url-relative url url) (no synopsis)

Calls the C++ function relative which returns url.

(url-expand url) (no synopsis)

Calls the C++ function expand which returns url.

(url-factor url) (no synopsis)

Calls the C++ function factor which returns url.

(url-delta url url) (no synopsis)

Calls the C++ function delta which returns url.

(url-secure? url) (no synopsis)

Calls the C++ function is_secure which returns bool.

(url-descends? url url) (no synopsis)

Calls the C++ function descends which returns bool.

(url-complete url string) (no synopsis)

Calls the C++ function complete which returns url.

(url-resolve url string) (no synopsis)

Calls the C++ function resolve which returns url.

(url-resolve-in-path url) (no synopsis)

Calls the C++ function resolve_in_path which returns url.

(url-exists? url) (no synopsis)

Calls the C++ function exists which returns bool.

(url-exists-in-path? url) (no synopsis)

Calls the C++ function exists_in_path which returns bool.

(url-exists-in-tex? url) (no synopsis)

Calls the C++ function exists_in_tex which returns bool.

(url-concretize url) (no synopsis)

Calls the C++ function concretize which returns string.

8.4 All glue functions 105

(url-materialize url string) (no synopsis)

Calls the C++ function materialize which returns string.

(url-test? url string) (no synopsis)

Calls the C++ function is_of_type which returns bool.

(url-regular? url) (no synopsis)

Calls the C++ function is_regular which returns bool.

(url-directory? url) (no synopsis)

Calls the C++ function is_directory which returns bool.

(url-link? url) (no synopsis)

Calls the C++ function is_symbolic_link which returns bool.

(url-newer? url url) (no synopsis)

Calls the C++ function is_newer which returns bool.

(url-size url) (no synopsis)

Calls the C++ function file_size which returns int.

(url-last-modified url) (no synopsis)

Calls the C++ function last_modified which returns int.

(url-temp) (no synopsis)

Calls the C++ function url_temp which returns url.

(url-scratch string string int) (no synopsis)

Calls the C++ function url_scratch which returns url.

(url-scratch? url) (no synopsis)

Calls the C++ function is_scratch which returns bool.

(url-cache-invalidate url) (no synopsis)

Calls the C++ function web_cache_invalidate which returns void.

(string-save string url) (no synopsis)

Calls the C++ function string_save which returns void.

(string-load url) (no synopsis)

Calls the C++ function string_load which returns string.

(string-append-to-file string url) (no synopsis)

Calls the C++ function string_append_to_file which returns void.

(system-move url url) (no synopsis)

Calls the C++ function move which returns void.

106 About the API documentation

(system-copy url url) (no synopsis)

Calls the C++ function copy which returns void.

(system-remove url) (no synopsis)

Calls the C++ function remove which returns void.

(system-mkdir url) (no synopsis)

Calls the C++ function mkdir which returns void.

(system-rmdir url) (no synopsis)

Calls the C++ function rmdir which returns void.

(system-search-score url array_string) (no synopsis)

Calls the C++ function search_score which returns int.

(system-1 string url) (no synopsis)

Calls the C++ function system which returns void.

(system-2 string url url) (no synopsis)

Calls the C++ function system which returns void.

(system-url->string url) (no synopsis)

Calls the C++ function sys_concretize which returns string.

(url-grep string url) (no synopsis)

Calls the C++ function grep which returns url.

(url-search-upwards url string array_string) (no synopsis)

Calls the C++ function search_file_upwards which returns url.

(persistent-set url string string) (no synopsis)

Calls the C++ function persistent_set which returns void.

(persistent-remove url string) (no synopsis)

Calls the C++ function persistent_reset which returns void.

(persistent-has? url string) (no synopsis)

Calls the C++ function persistent_contains which returns bool.

(persistent-get url string) (no synopsis)

Calls the C++ function persistent_get which returns string.

(persistent-file-name url string) (no synopsis)

Calls the C++ function persistent_file_name which returns url.

(tmdb-keep-history url bool) (no synopsis)

Calls the C++ function keep_history which returns void.

8.4 All glue functions 107

(tmdb-set-field url string string array_string double) (no synopsis)

Calls the C++ function set_field which returns void.

(tmdb-get-field url string string double) (no synopsis)

Calls the C++ function get_field which returns array_string.

(tmdb-remove-field url string string double) (no synopsis)

Calls the C++ function remove_field which returns void.

(tmdb-get-attributes url string double) (no synopsis)

Calls the C++ function get_attributes which returns array_string.

(tmdb-set-entry url string scheme_tree double) (no synopsis)

Calls the C++ function set_entry which returns void.

(tmdb-get-entry url string double) (no synopsis)

Calls the C++ function get_entry which returns scheme_tree.

(tmdb-remove-entry url string double) (no synopsis)

Calls the C++ function remove_entry which returns void.

(tmdb-query url scheme_tree double int) (no synopsis)

Calls the C++ function query which returns array_string.

(tmdb-inspect-history url string) (no synopsis)

Calls the C++ function inspect_history which returns void.

(tmdb-get-completions url string) (no synopsis)

Calls the C++ function get_completions which returns array_string.

(tmdb-get-name-completions url string) (no synopsis)

Calls the C++ function get_name_completions which returns array_string.

(supports-sql?) (no synopsis)

Calls the C++ function sqlite3_present which returns bool.

(sql-exec url string) (no synopsis)

Calls the C++ function sql_exec which returns scheme_tree.

(sql-quote string) (no synopsis)

Calls the C++ function sql_quote which returns string.

(server-start) (no synopsis)

Calls the C++ function server_start which returns void.

(server-stop) (no synopsis)

Calls the C++ function server_stop which returns void.

108 About the API documentation

(server-read int) (no synopsis)

Calls the C++ function server_read which returns string.

(server-write int string) (no synopsis)

Calls the C++ function server_write which returns void.

(server-started?) (no synopsis)

Calls the C++ function server_started which returns bool.

(client-start string) (no synopsis)

Calls the C++ function client_start which returns int.

(client-stop int) (no synopsis)

Calls the C++ function client_stop which returns void.

(client-read int) (no synopsis)

Calls the C++ function client_read which returns string.

(client-write int string) (no synopsis)

Calls the C++ function client_write which returns void.

(enter-secure-mode int) (no synopsis)

Calls the C++ function enter_secure_mode which returns void.

(connection-start string string) (no synopsis)

Calls the C++ function connection_start which returns string.

(connection-status string string) (no synopsis)

Calls the C++ function connection_status which returns int.

(connection-write-string string string string) (no synopsis)

Calls the C++ function connection_write which returns void.

(connection-write string string content) (no synopsis)

Calls the C++ function connection_write which returns void.

(connection-cmd string string string) (no synopsis)

Calls the C++ function connection_cmd which returns tree.

(connection-eval string string content) (no synopsis)

Calls the C++ function connection_eval which returns tree.

(connection-interrupt string string) (no synopsis)

Calls the C++ function connection_interrupt which returns void.

(connection-stop string string) (no synopsis)

Calls the C++ function connection_stop which returns void.

8.4 All glue functions 109

(widget-printer command url) (no synopsis)

Calls the C++ function printer_widget which returns widget.

(widget-color-picker command bool array_tree) (no synopsis)

Calls the C++ function color_picker_widget which returns widget.

(widget-extend widget array_widget) (no synopsis)

Calls the C++ function extend which returns widget.

(widget-hmenu array_widget) (no synopsis)

Calls the C++ function horizontal_menu which returns widget.

(widget-vmenu array_widget) (no synopsis)

Calls the C++ function vertical_menu which returns widget.

(widget-tmenu array_widget int) (no synopsis)

Calls the C++ function tile_menu which returns widget.

(widget-minibar-menu array_widget) (no synopsis)

Calls the C++ function minibar_menu which returns widget.

(widget-separator bool) (no synopsis)

Calls the C++ function menu_separator which returns widget.

(widget-menu-group string int) (no synopsis)

Calls the C++ function menu_group which returns widget.

(widget-pulldown-button widget promise_widget) (no synopsis)

Calls the C++ function pulldown_button which returns widget.

(widget-pullright-button widget promise_widget) (no synopsis)

Calls the C++ function pullright_button which returns widget.

(widget-menu-button widget command string string int) (no synopsis)

Calls the C++ function menu_button which returns widget.

(widget-toggle command bool int) (no synopsis)

Calls the C++ function toggle_widget which returns widget.

(widget-balloon widget widget) (no synopsis)

Calls the C++ function balloon_widget which returns widget.

(widget-empty) (no synopsis)

Calls the C++ function empty_widget which returns widget.

(widget-text string int int bool) (no synopsis)

Calls the C++ function text_widget which returns widget.

110 About the API documentation

(widget-input command string array_string int string) (no synopsis)

Calls the C++ function input_text_widget which returns widget.

(widget-enum command array_string string int string) (no synopsis)

Calls the C++ function enum_widget which returns widget.

(widget-choice command array_string string) (no synopsis)

Calls the C++ function choice_widget which returns widget.

(widget-choices command array_string array_string) (no synopsis)

Calls the C++ function choice_widget which returns widget.

(widget-filtered-choice command array_string string string) (no synopsis)

Calls the C++ function choice_widget which returns widget.

(widget-tree-view command tree tree) (no synopsis)

Calls the C++ function tree_view_widget which returns widget.

(widget-xpm url) (no synopsis)

Calls the C++ function xpm_widget which returns widget.

(widget-box scheme_tree string int bool bool) (no synopsis)

Calls the C++ function box_widget which returns widget.

(widget-glue bool bool int int) (no synopsis)

Calls the C++ function glue_widget which returns widget.

(widget-color content bool bool int int) (no synopsis)

Calls the C++ function glue_widget which returns widget.

(widget-hlist array_widget) (no synopsis)

Calls the C++ function horizontal_list which returns widget.

(widget-vlist array_widget) (no synopsis)

Calls the C++ function vertical_list which returns widget.

(widget-aligned array_widget array_widget) (no synopsis)

Calls the C++ function aligned_widget which returns widget.

(widget-tabs array_widget array_widget) (no synopsis)

Calls the C++ function tabs_widget which returns widget.

(widget-icon-tabs array_url array_widget array_widget) (no synopsis)

Calls the C++ function icon_tabs_widget which returns widget.

(widget-scrollable widget int) (no synopsis)

Calls the C++ function user_canvas_widget which returns widget.

8.4 All glue functions 111

(widget-resize widget int string string string string string string string
string) (no synopsis)

Calls the C++ function resize_widget which returns widget.

(widget-hsplit widget widget) (no synopsis)

Calls the C++ function hsplit_widget which returns widget.

(widget-vsplit widget widget) (no synopsis)

Calls the C++ function vsplit_widget which returns widget.

(widget-texmacs-output content content) (no synopsis)

Calls the C++ function texmacs_output_widget which returns widget.

(widget-texmacs-input content content url) (no synopsis)

Calls the C++ function texmacs_input_widget which returns widget.

(widget-ink command) (no synopsis)

Calls the C++ function ink_widget which returns widget.

(widget-refresh string string) (no synopsis)

Calls the C++ function refresh_widget which returns widget.

(widget-refreshable object string) (no synopsis)

Calls the C++ function refreshable_widget which returns widget.

(object->promise-widget object) (no synopsis)

Calls the C++ function as_promise_widget which returns promise_widget.

(tree-bounding-rectangle tree) (no synopsis)

Calls the C++ function get_bounding_rectangle which returns array_int.

(widget-size widget) (no synopsis)

Calls the C++ function get_widget_size which returns array_int.

(show-balloon widget int int) (no synopsis)

Calls the C++ function show_help_balloon which returns void.

(get-style-menu) (no synopsis)

Calls the C++ function get_style_menu which returns object.

(hidden-package? string) (no synopsis)

Calls the C++ function hidden_package which returns bool.

(get-add-package-menu) (no synopsis)

Calls the C++ function get_add_package_menu which returns object.

(get-remove-package-menu) (no synopsis)

Calls the C++ function get_remove_package_menu which returns object.

112 About the API documentation

(get-toggle-package-menu) (no synopsis)

Calls the C++ function get_toggle_package_menu which returns object.

(refresh-now string) (no synopsis)

Calls the C++ function windows_refresh which returns void.

(buffer-list) (no synopsis)

Calls the C++ function get_all_buffers which returns array_url.

(current-buffer-url) (no synopsis)

Calls the C++ function get_current_buffer_safe which returns url.

(path-to-buffer path) (no synopsis)

Calls the C++ function path_to_buffer which returns url.

(buffer-new) (no synopsis)

Calls the C++ function make_new_buffer which returns url.

(buffer-rename url url) (no synopsis)

Calls the C++ function rename_buffer which returns void.

(buffer-set url content) (no synopsis)

Calls the C++ function set_buffer_tree which returns void.

(buffer-get url) (no synopsis)

Calls the C++ function get_buffer_tree which returns tree.

(buffer-set-body url content) (no synopsis)

Calls the C++ function set_buffer_body which returns void.

(buffer-get-body url) (no synopsis)

Calls the C++ function get_buffer_body which returns tree.

(buffer-set-master url url) (no synopsis)

Calls the C++ function set_master_buffer which returns void.

(buffer-get-master url) (no synopsis)

Calls the C++ function get_master_buffer which returns url.

(buffer-set-title url string) (no synopsis)

Calls the C++ function set_title_buffer which returns void.

(buffer-get-title url) (no synopsis)

Calls the C++ function get_title_buffer which returns string.

(buffer-last-save url) (no synopsis)

Calls the C++ function get_last_save_buffer which returns int.

8.4 All glue functions 113

(buffer-last-visited url) (no synopsis)

Calls the C++ function last_visited which returns double.

(buffer-modified? url) (no synopsis)

Calls the C++ function buffer_modified which returns bool.

(buffer-modified-since-autosave? url) (no synopsis)

Calls the C++ function buffer_modified_since_autosave which returns bool.

(buffer-pretend-modified url) (no synopsis)

Calls the C++ function pretend_buffer_modified which returns void.

(buffer-pretend-saved url) (no synopsis)

Calls the C++ function pretend_buffer_saved which returns void.

(buffer-pretend-autosaved url) (no synopsis)

Calls the C++ function pretend_buffer_autosaved which returns void.

(buffer-attach-notifier url) (no synopsis)

Calls the C++ function attach_buffer_notifier which returns void.

(buffer-has-name? url) (no synopsis)

Calls the C++ function buffer_has_name which returns bool.

(buffer-aux? url) (no synopsis)

Calls the C++ function is_aux_buffer which returns bool.

(buffer-embedded? url) (no synopsis)

Calls the C++ function is_embedded_buffer which returns bool.

(buffer-import url url string) (no synopsis)

Calls the C++ function buffer_import which returns bool.

(buffer-load url) (no synopsis)

Calls the C++ function buffer_load which returns bool.

(buffer-export url url string) (no synopsis)

Calls the C++ function buffer_export which returns bool.

(buffer-save url) (no synopsis)

Calls the C++ function buffer_save which returns bool.

(tree-import-loaded string url string) (no synopsis)

Calls the C++ function import_loaded_tree which returns tree.

(tree-import url string) (no synopsis)

Calls the C++ function import_tree which returns tree.

114 About the API documentation

(tree-inclusion url) (no synopsis)

Calls the C++ function load_inclusion which returns tree.

(tree-export tree url string) (no synopsis)

Calls the C++ function export_tree which returns bool.

(tree-load-style string) (no synopsis)

Calls the C++ function load_style_tree which returns tree.

(buffer-focus url) (no synopsis)

Calls the C++ function focus_on_buffer which returns bool.

(view-list) (no synopsis)

Calls the C++ function get_all_views which returns array_url.

(buffer->views url) (no synopsis)

Calls the C++ function buffer_to_views which returns array_url.

(current-view-url) (no synopsis)

Calls the C++ function get_current_view_safe which returns url.

(window->view url) (no synopsis)

Calls the C++ function window_to_view which returns url.

(view->buffer url) (no synopsis)

Calls the C++ function view_to_buffer which returns url.

(view->window-url url) (no synopsis)

Calls the C++ function view_to_window which returns url.

(view-new url) (no synopsis)

Calls the C++ function get_new_view which returns url.

(view-passive url) (no synopsis)

Calls the C++ function get_passive_view which returns url.

(view-recent url) (no synopsis)

Calls the C++ function get_recent_view which returns url.

(view-delete url) (no synopsis)

Calls the C++ function delete_view which returns void.

(window-set-view url url bool) (no synopsis)

Calls the C++ function window_set_view which returns void.

(switch-to-buffer url) (no synopsis)

Calls the C++ function switch_to_buffer which returns void.

8.4 All glue functions 115

(window-list) (no synopsis)

Calls the C++ function windows_list which returns array_url.

(windows-number) (no synopsis)

Calls the C++ function get_nr_windows which returns int.

(current-window) (no synopsis)

Calls the C++ function get_current_window which returns url.

(buffer->windows url) (no synopsis)

Calls the C++ function buffer_to_windows which returns array_url.

(window-to-buffer url) (no synopsis)

Calls the C++ function window_to_buffer which returns url.

(window-set-buffer url url) (no synopsis)

Calls the C++ function window_set_buffer which returns void.

(window-focus url) (no synopsis)

Calls the C++ function window_focus which returns void.

(new-buffer) (no synopsis)

Calls the C++ function create_buffer which returns url.

(open-buffer-in-window url content content) (no synopsis)

Calls the C++ function new_buffer_in_new_window which returns url.

(open-window) (no synopsis)

Calls the C++ function open_window which returns url.

(open-window-geometry content) (no synopsis)

Calls the C++ function open_window which returns url.

(clone-window) (no synopsis)

Calls the C++ function clone_window which returns void.

(buffer-close url) (no synopsis)

Calls the C++ function kill_buffer which returns void.

(kill-window url) (no synopsis)

Calls the C++ function kill_window which returns void.

(kill-current-window-and-buffer) (no synopsis)

Calls the C++ function kill_current_window_and_buffer which returns void.

(project-attach string) (no synopsis)

Calls the C++ function project_attach which returns void.

116 About the API documentation

(project-detach) (no synopsis)

Calls the C++ function project_attach which returns void.

(project-attached?) (no synopsis)

Calls the C++ function project_attached which returns bool.

(project-get) (no synopsis)

Calls the C++ function project_get which returns url.

(alt-window-handle) (no synopsis)

Calls the C++ function window_handle which returns int.

(alt-window-create int widget string bool) (no synopsis)

Calls the C++ function window_create which returns void.

(alt-window-create-quit int widget string command) (no synopsis)

Calls the C++ function window_create which returns void.

(alt-window-delete int) (no synopsis)

Calls the C++ function window_delete which returns void.

(alt-window-show int) (no synopsis)

Calls the C++ function window_show which returns void.

(alt-window-hide int) (no synopsis)

Calls the C++ function window_hide which returns void.

(alt-window-get-size int) (no synopsis)

Calls the C++ function window_get_size which returns scheme_tree.

(alt-window-set-size int int int) (no synopsis)

Calls the C++ function window_set_size which returns void.

(alt-window-get-position int) (no synopsis)

Calls the C++ function window_get_position which returns scheme_tree.

(alt-window-set-position int int int) (no synopsis)

Calls the C++ function window_set_position which returns void.

(alt-window-search url) (no synopsis)

Calls the C++ function window_search which returns path.

(bibtex-run string string url array_string) (no synopsis)

Calls the C++ function bibtex_run which returns tree.

(bib-add-period scheme_tree) (no synopsis)

Calls the C++ function bib_add_period which returns scheme_tree.

(bib-locase-first scheme_tree) (no synopsis)

Calls the C++ function bib_locase_first which returns scheme_tree.

8.4 All glue functions 117

(bib-upcase-first scheme_tree) (no synopsis)

Calls the C++ function bib_upcase_first which returns scheme_tree.

(bib-locase scheme_tree) (no synopsis)

Calls the C++ function bib_locase which returns scheme_tree.

(bib-upcase scheme_tree) (no synopsis)

Calls the C++ function bib_upcase which returns scheme_tree.

(bib-default-preserve-case scheme_tree) (no synopsis)

Calls the C++ function bib_default_preserve_case which returns scheme_tree.

(bib-default-upcase-first scheme_tree) (no synopsis)

Calls the C++ function bib_default_upcase_first which returns scheme_tree.

(bib-purify scheme_tree) (no synopsis)

Calls the C++ function bib_purify which returns string.

(bib-text-length scheme_tree) (no synopsis)

Calls the C++ function bib_text_length which returns int.

(bib-prefix scheme_tree int) (no synopsis)

Calls the C++ function bib_prefix which returns string.

(bib-empty? scheme_tree string) (no synopsis)

Calls the C++ function bib_empty which returns bool.

(bib-field scheme_tree string) (no synopsis)

Calls the C++ function bib_field which returns scheme_tree.

(bib-abbreviate scheme_tree scheme_tree scheme_tree) (no synopsis)

Calls the C++ function bib_abbreviate which returns scheme_tree.

(insert-kbd-wildcard string string bool bool bool) (no synopsis)

Calls the C++ function insert_kbd_wildcard which returns void.

(set-variant-keys string string) (no synopsis)

Calls the C++ function set_variant_keys which returns void.

(kbd-pre-rewrite string) (no synopsis)

Calls the C++ function kbd_pre_rewrite which returns string.

(kbd-post-rewrite string bool) (no synopsis)

Calls the C++ function kbd_post_rewrite which returns string.

(kbd-system-rewrite string) (no synopsis)

Calls the C++ function kbd_system_rewrite which returns tree.

118 About the API documentation

(set-font-rules scheme_tree) (no synopsis)

Calls the C++ function set_font_rules which returns void.

(window-get-serial) (no synopsis)

Calls the C++ function get_window_serial which returns int.

(window-set-property scheme_tree scheme_tree) (no synopsis)

Calls the C++ function set_window_property which returns void.

(window-get-property scheme_tree) (no synopsis)

Calls the C++ function get_window_property which returns scheme_tree.

(show-header bool) (no synopsis)

Calls the C++ function show_header which returns void.

(show-icon-bar int bool) (no synopsis)

Calls the C++ function show_icon_bar which returns void.

(show-side-tools int bool) (no synopsis)

Calls the C++ function show_side_tools which returns void.

(show-bottom-tools int bool) (no synopsis)

Calls the C++ function show_bottom_tools which returns void.

(show-footer bool) (no synopsis)

Calls the C++ function show_footer which returns void.

(visible-header?) (no synopsis)

Calls the C++ function visible_header which returns bool.

(visible-icon-bar? int) (no synopsis)

Calls the C++ function visible_icon_bar which returns bool.

(visible-side-tools? int) (no synopsis)

Calls the C++ function visible_side_tools which returns bool.

(visible-bottom-tools? int) (no synopsis)

Calls the C++ function visible_bottom_tools which returns bool.

(visible-footer?) (no synopsis)

Calls the C++ function visible_footer which returns bool.

(full-screen-mode bool bool) (no synopsis)

Calls the C++ function full_screen_mode which returns void.

(full-screen?) (no synopsis)

Calls the C++ function in_full_screen_mode which returns bool.

8.4 All glue functions 119

(full-screen-edit?) (no synopsis)

Calls the C++ function in_full_screen_edit_mode which returns bool.

(set-window-zoom-factor double) (no synopsis)

Calls the C++ function set_window_zoom_factor which returns void.

(get-window-zoom-factor) (no synopsis)

Calls the C++ function get_window_zoom_factor which returns double.

(shell string) (no synopsis)

Calls the C++ function shell which returns void.

(dialogue-end) (no synopsis)

Calls the C++ function dialogue_end which returns void.

(cpp-choose-file object string string string url) (no synopsis)

Calls the C++ function choose_file which returns void.

(tm-interactive object scheme_tree) (no synopsis)

Calls the C++ function interactive which returns void.

(style-clear-cache) (no synopsis)

Calls the C++ function style_clear_cache which returns void.

(set-script-status int) (no synopsis)

Calls the C++ function set_script_status which returns void.

(set-printing-command string) (no synopsis)

Calls the C++ function set_printing_command which returns void.

(set-printer-paper-type string) (no synopsis)

Calls the C++ function set_printer_page_type which returns void.

(get-printer-paper-type) (no synopsis)

Calls the C++ function get_printer_page_type which returns string.

(set-printer-dpi string) (no synopsis)

Calls the C++ function set_printer_dpi which returns void.

(set-default-zoom-factor double) (no synopsis)

Calls the C++ function set_default_zoom_factor which returns void.

(get-default-zoom-factor) (no synopsis)

Calls the C++ function get_default_zoom_factor which returns double.

(inclusions-gc) (no synopsis)

Calls the C++ function inclusions_gc which returns void.

120 About the API documentation

(update-all-path path) (no synopsis)

Calls the C++ function typeset_update which returns void.

(update-all-buffers) (no synopsis)

Calls the C++ function typeset_update_all which returns void.

(set-message content content) (no synopsis)

Calls the C++ function set_message which returns void.

(set-message-temp content content bool) (no synopsis)

Calls the C++ function set_message which returns void.

(recall-message) (no synopsis)

Calls the C++ function recall_message which returns void.

(yes? string) (no synopsis)

Calls the C++ function is_yes which returns bool.

(quit-TeXmacs) (no synopsis)

Calls the C++ function quit which returns void.

(root-tree) (no synopsis)

Calls the C++ function the_root which returns tree.

(buffer-path) (no synopsis)

Calls the C++ function the_buffer_path which returns path.

(buffer-tree) (no synopsis)

Calls the C++ function the_buffer which returns tree.

(paragraph-tree) (no synopsis)

Calls the C++ function the_line which returns tree.

(cursor-path) (no synopsis)

Calls the C++ function the_path which returns path.

(cursor-path*) (no synopsis)

Calls the C++ function the_shifted_path which returns path.

(selection-tree) (no synopsis)

Calls the C++ function selection_get which returns tree.

(path->tree path) (no synopsis)

Calls the C++ function the_subtree which returns tree.

(path-correct-old path) (no synopsis)

Calls the C++ function correct which returns void.

8.4 All glue functions 121

(path-insert-with path string content) (no synopsis)

Calls the C++ function insert_with which returns void.

(path-remove-with path string) (no synopsis)

Calls the C++ function remove_with which returns void.

(position-new-path path) (no synopsis)

Calls the C++ function position_new which returns observer.

(position-delete observer) (no synopsis)

Calls the C++ function position_delete which returns void.

(position-set observer path) (no synopsis)

Calls the C++ function position_set which returns void.

(position-get observer) (no synopsis)

Calls the C++ function position_get which returns path.

(inside? tree_label) (no synopsis)

Calls the C++ function inside which returns bool.

(cpp-insert content) (no synopsis)

Calls the C++ function insert_tree which returns void.

(cpp-insert-go-to content path) (no synopsis)

Calls the C++ function var_insert_tree which returns void.

(insert-raw-go-to content path) (no synopsis)

Calls the C++ function insert_tree which returns void.

(insert-raw-return) (no synopsis)

Calls the C++ function insert_return which returns void.

(remove-text bool) (no synopsis)

Calls the C++ function remove_text which returns void.

(remove-structure bool) (no synopsis)

Calls the C++ function remove_structure which returns void.

(remove-structure-upwards) (no synopsis)

Calls the C++ function remove_structure_upwards which returns void.

(cpp-make tree_label) (no synopsis)

Calls the C++ function make_compound which returns void.

(cpp-make-arity tree_label int) (no synopsis)

Calls the C++ function make_compound which returns void.

(activate) (no synopsis)

Calls the C++ function activate which returns void.

122 About the API documentation

(insert-argument bool) (no synopsis)

Calls the C++ function insert_argument which returns void.

(remove-argument bool) (no synopsis)

Calls the C++ function remove_argument which returns void.

(insert-argument-at path bool) (no synopsis)

Calls the C++ function insert_argument which returns void.

(remove-argument-at path bool) (no synopsis)

Calls the C++ function remove_argument which returns void.

(cpp-make-with string string) (no synopsis)

Calls the C++ function make_with which returns void.

(make-mod-active tree_label) (no synopsis)

Calls the C++ function make_mod_active which returns void.

(make-style-with string string) (no synopsis)

Calls the C++ function make_style_with which returns void.

(cpp-make-hybrid) (no synopsis)

Calls the C++ function make_hybrid which returns void.

(activate-latex) (no synopsis)

Calls the C++ function activate_latex which returns void.

(activate-hybrid bool) (no synopsis)

Calls the C++ function activate_hybrid which returns void.

(activate-symbol) (no synopsis)

Calls the C++ function activate_symbol which returns void.

(make-return-before) (no synopsis)

Calls the C++ function make_return_before which returns void.

(make-return-after) (no synopsis)

Calls the C++ function make_return_after which returns bool.

(temp-proof-fix) (no synopsis)

Calls the C++ function temp_proof_fix which returns void.

(get-full-env) (no synopsis)

Calls the C++ function get_full_env which returns tree.

(get-all-inits) (no synopsis)

Calls the C++ function get_init_all which returns tree.

(init-default-one string) (no synopsis)

Calls the C++ function init_default which returns void.

8.4 All glue functions 123

(init-env string string) (no synopsis)

Calls the C++ function init_env which returns void.

(init-env-tree string content) (no synopsis)

Calls the C++ function init_env which returns void.

(init-style string) (no synopsis)

Calls the C++ function init_style which returns void.

(get-style-tree) (no synopsis)

Calls the C++ function get_style which returns tree.

(set-style-tree tree) (no synopsis)

Calls the C++ function change_style which returns void.

(get-env string) (no synopsis)

Calls the C++ function get_env_string which returns string.

(get-env-tree string) (no synopsis)

Calls the C++ function get_env_value which returns tree.

(get-env-tree-at string path) (no synopsis)

Calls the C++ function get_env_value which returns tree.

(get-init string) (no synopsis)

Calls the C++ function get_init_string which returns string.

(get-init-tree string) (no synopsis)

Calls the C++ function get_init_value which returns tree.

(context-has? string) (no synopsis)

Calls the C++ function defined_at_cursor which returns bool.

(style-has? string) (no synopsis)

Calls the C++ function defined_at_init which returns bool.

(init-has? string) (no synopsis)

Calls the C++ function defined_in_init which returns bool.

(get-page-count) (no synopsis)

Calls the C++ function get_page_count which returns int.

(get-page-width bool) (no synopsis)

Calls the C++ function get_page_width which returns int.

(get-pages-width bool) (no synopsis)

Calls the C++ function get_pages_width which returns int.

124 About the API documentation

(get-page-height bool) (no synopsis)

Calls the C++ function get_page_height which returns int.

(get-total-width bool) (no synopsis)

Calls the C++ function get_total_width which returns int.

(get-total-height bool) (no synopsis)

Calls the C++ function get_total_height which returns int.

(get-attachment string) (no synopsis)

Calls the C++ function get_att which returns tree.

(set-attachment string content) (no synopsis)

Calls the C++ function set_att which returns void.

(reset-attachment string) (no synopsis)

Calls the C++ function reset_att which returns void.

(list-attachments) (no synopsis)

Calls the C++ function list_atts which returns array_string.

(make-htab string) (no synopsis)

Calls the C++ function make_htab which returns void.

(make-space string) (no synopsis)

Calls the C++ function make_space which returns void.

(make-var-space string string string) (no synopsis)

Calls the C++ function make_space which returns void.

(make-hspace string) (no synopsis)

Calls the C++ function make_hspace which returns void.

(make-var-hspace string string string) (no synopsis)

Calls the C++ function make_hspace which returns void.

(make-vspace-before string) (no synopsis)

Calls the C++ function make_vspace_before which returns void.

(make-var-vspace-before string string string) (no synopsis)

Calls the C++ function make_vspace_before which returns void.

(make-vspace-after string) (no synopsis)

Calls the C++ function make_vspace_after which returns void.

(make-var-vspace-after string string string) (no synopsis)

Calls the C++ function make_vspace_after which returns void.

8.4 All glue functions 125

(make-image string bool string string string string) (no synopsis)

Calls the C++ function make_image which returns void.

(length-decode string) (no synopsis)

Calls the C++ function as_length which returns int.

(length-add string string) (no synopsis)

Calls the C++ function add_lengths which returns string.

(length-mult double string) (no synopsis)

Calls the C++ function multiply_length which returns string.

(length? string) (no synopsis)

Calls the C++ function is_length which returns bool.

(length-divide string string) (no synopsis)

Calls the C++ function divide_lengths which returns double.

(cpp-make-rigid) (no synopsis)

Calls the C++ function make_rigid which returns void.

(cpp-make-lprime string) (no synopsis)

Calls the C++ function make_lprime which returns void.

(cpp-make-rprime string) (no synopsis)

Calls the C++ function make_rprime which returns void.

(cpp-make-below) (no synopsis)

Calls the C++ function make_below which returns void.

(cpp-make-above) (no synopsis)

Calls the C++ function make_above which returns void.

(cpp-make-script bool bool) (no synopsis)

Calls the C++ function make_script which returns void.

(cpp-make-fraction) (no synopsis)

Calls the C++ function make_fraction which returns void.

(cpp-make-sqrt) (no synopsis)

Calls the C++ function make_sqrt which returns void.

(cpp-make-wide string) (no synopsis)

Calls the C++ function make_wide which returns void.

(cpp-make-wide-under string) (no synopsis)

Calls the C++ function make_wide_under which returns void.

126 About the API documentation

(cpp-make-var-sqrt) (no synopsis)

Calls the C++ function make_var_sqrt which returns void.

(cpp-make-neg) (no synopsis)

Calls the C++ function make_neg which returns void.

(cpp-make-tree) (no synopsis)

Calls the C++ function make_tree which returns void.

(make-subtable) (no synopsis)

Calls the C++ function make_subtable which returns void.

(table-deactivate) (no synopsis)

Calls the C++ function table_deactivate which returns void.

(table-extract-format) (no synopsis)

Calls the C++ function table_extract_format which returns void.

(table-insert-row bool) (no synopsis)

Calls the C++ function table_insert_row which returns void.

(table-insert-column bool) (no synopsis)

Calls the C++ function table_insert_column which returns void.

(table-remove-row bool) (no synopsis)

Calls the C++ function table_remove_row which returns void.

(table-remove-column bool) (no synopsis)

Calls the C++ function table_remove_column which returns void.

(table-nr-rows) (no synopsis)

Calls the C++ function table_nr_rows which returns int.

(table-nr-columns) (no synopsis)

Calls the C++ function table_nr_columns which returns int.

(table-get-extents) (no synopsis)

Calls the C++ function table_get_extents which returns array_int.

(table-set-extents int int) (no synopsis)

Calls the C++ function table_set_extents which returns void.

(table-which-row) (no synopsis)

Calls the C++ function table_which_row which returns int.

(table-which-column) (no synopsis)

Calls the C++ function table_which_column which returns int.

8.4 All glue functions 127

(table-which-cells) (no synopsis)

Calls the C++ function table_which_cells which returns array_int.

(table-cell-path int int) (no synopsis)

Calls the C++ function table_search_cell which returns path.

(table-go-to int int) (no synopsis)

Calls the C++ function table_go_to which returns void.

(table-set-format string content) (no synopsis)

Calls the C++ function table_set_format which returns void.

(table-get-format-all) (no synopsis)

Calls the C++ function table_get_format which returns tree.

(table-get-format string) (no synopsis)

Calls the C++ function table_get_format which returns string.

(table-del-format string) (no synopsis)

Calls the C++ function table_del_format which returns void.

(table-row-decoration bool) (no synopsis)

Calls the C++ function table_row_decoration which returns void.

(table-column-decoration bool) (no synopsis)

Calls the C++ function table_column_decoration which returns void.

(table-format-center) (no synopsis)

Calls the C++ function table_format_center which returns void.

(table-correct-block-content) (no synopsis)

Calls the C++ function table_correct_block_content which returns void.

(set-cell-mode string) (no synopsis)

Calls the C++ function set_cell_mode which returns void.

(get-cell-mode) (no synopsis)

Calls the C++ function get_cell_mode which returns string.

(cell-set-format string content) (no synopsis)

Calls the C++ function cell_set_format which returns void.

(cell-get-format string) (no synopsis)

Calls the C++ function cell_get_format which returns string.

(cell-del-format string) (no synopsis)

Calls the C++ function cell_del_format which returns void.

(table-test) (no synopsis)

Calls the C++ function table_test which returns void.

128 About the API documentation

(key-press string) (no synopsis)

Calls the C++ function key_press which returns void.

(raw-emulate-keyboard string) (no synopsis)

Calls the C++ function emulate_keyboard which returns void.

(complete-try?) (no synopsis)

Calls the C++ function complete_try which returns bool.

(get-input-mode) (no synopsis)

Calls the C++ function get_input_mode which returns int.

(key-press-search string) (no synopsis)

Calls the C++ function search_keypress which returns bool.

(key-press-replace string) (no synopsis)

Calls the C++ function replace_keypress which returns bool.

(key-press-spell string) (no synopsis)

Calls the C++ function spell_keypress which returns bool.

(key-press-complete string) (no synopsis)

Calls the C++ function complete_keypress which returns bool.

(mouse-any string int int int double) (no synopsis)

Calls the C++ function mouse_any which returns void.

(get-mouse-position) (no synopsis)

Calls the C++ function get_mouse_position which returns array_int.

(set-mouse-pointer string string) (no synopsis)

Calls the C++ function set_pointer which returns void.

(set-predef-mouse-pointer string) (no synopsis)

Calls the C++ function set_pointer which returns void.

(go-to-path path) (no synopsis)

Calls the C++ function go_to which returns void.

(go-left) (no synopsis)

Calls the C++ function go_left which returns void.

(go-right) (no synopsis)

Calls the C++ function go_right which returns void.

(go-up) (no synopsis)

Calls the C++ function go_up which returns void.

8.4 All glue functions 129

(go-down) (no synopsis)

Calls the C++ function go_down which returns void.

(go-start) (no synopsis)

Calls the C++ function go_start which returns void.

(go-end) (no synopsis)

Calls the C++ function go_end which returns void.

(go-start-of tree_label) (no synopsis)

Calls the C++ function go_start_of which returns void.

(go-end-of tree_label) (no synopsis)

Calls the C++ function go_end_of which returns void.

(go-start-with string string) (no synopsis)

Calls the C++ function go_start_with which returns void.

(go-end-with string string) (no synopsis)

Calls the C++ function go_end_with which returns void.

(go-start-line) (no synopsis)

Calls the C++ function go_start_line which returns void.

(go-end-line) (no synopsis)

Calls the C++ function go_end_line which returns void.

(go-page-up) (no synopsis)

Calls the C++ function go_page_up which returns void.

(go-page-down) (no synopsis)

Calls the C++ function go_page_down which returns void.

(go-start-paragraph) (no synopsis)

Calls the C++ function go_start_paragraph which returns void.

(go-end-paragraph) (no synopsis)

Calls the C++ function go_end_paragraph which returns void.

(go-to-label string) (no synopsis)

Calls the C++ function go_to_label which returns void.

(cursor-accessible?) (no synopsis)

Calls the C++ function cursor_is_accessible which returns bool.

(cursor-show-if-hidden) (no synopsis)

Calls the C++ function show_cursor_if_hidden which returns void.

130 About the API documentation

(select-all) (no synopsis)

Calls the C++ function select_all which returns void.

(select-line) (no synopsis)

Calls the C++ function select_line which returns void.

(select-from-cursor) (no synopsis)

Calls the C++ function select_from_cursor which returns void.

(select-from-cursor-if-active) (no synopsis)

Calls the C++ function select_from_cursor_if_active which returns void.

(select-from-keyboard bool) (no synopsis)

Calls the C++ function select_from_keyboard which returns void.

(select-from-shift-keyboard) (no synopsis)

Calls the C++ function select_from_shift_keyboard which returns void.

(select-enlarge) (no synopsis)

Calls the C++ function select_enlarge which returns void.

(select-enlarge-environmental) (no synopsis)

Calls the C++ function select_enlarge_environmental which returns void.

(selection-active-any?) (no synopsis)

Calls the C++ function selection_active_any which returns bool.

(selection-active-normal?) (no synopsis)

Calls the C++ function selection_active_normal which returns bool.

(selection-active-table?) (no synopsis)

Calls the C++ function selection_active_table which returns bool.

(selection-active-small?) (no synopsis)

Calls the C++ function selection_active_small which returns bool.

(selection-active-enlarging?) (no synopsis)

Calls the C++ function selection_active_enlarging which returns bool.

(selection-set-start) (no synopsis)

Calls the C++ function selection_set_start which returns void.

(selection-set-end) (no synopsis)

Calls the C++ function selection_set_end which returns void.

(selection-get-start) (no synopsis)

Calls the C++ function selection_get_start which returns path.

8.4 All glue functions 131

(selection-get-end) (no synopsis)

Calls the C++ function selection_get_end which returns path.

(selection-get-start*) (no synopsis)

Calls the C++ function selection_var_get_start which returns path.

(selection-get-end*) (no synopsis)

Calls the C++ function selection_var_get_end which returns path.

(selection-path) (no synopsis)

Calls the C++ function selection_get_path which returns path.

(selection-set path path) (no synopsis)

Calls the C++ function selection_set_paths which returns void.

(selection-set-range-set array_path) (no synopsis)

Calls the C++ function selection_set_range_set which returns void.

(clipboard-set string content) (no synopsis)

Calls the C++ function selection_set which returns void.

(clipboard-get string) (no synopsis)

Calls the C++ function selection_get which returns tree.

(cpp-clipboard-copy string) (no synopsis)

Calls the C++ function selection_copy which returns void.

(cpp-clipboard-cut string) (no synopsis)

Calls the C++ function selection_cut which returns void.

(clipboard-cut-at path) (no synopsis)

Calls the C++ function cut which returns void.

(clipboard-cut-between path path) (no synopsis)

Calls the C++ function cut which returns void.

(cpp-clipboard-paste string) (no synopsis)

Calls the C++ function selection_paste which returns void.

(selection-move) (no synopsis)

Calls the C++ function selection_move which returns void.

(clipboard-clear string) (no synopsis)

Calls the C++ function selection_clear which returns void.

(selection-cancel) (no synopsis)

Calls the C++ function selection_cancel which returns void.

132 About the API documentation

(clipboard-set-import string) (no synopsis)

Calls the C++ function selection_set_import which returns void.

(clipboard-set-export string) (no synopsis)

Calls the C++ function selection_set_export which returns void.

(clipboard-get-import) (no synopsis)

Calls the C++ function selection_get_import which returns string.

(clipboard-get-export) (no synopsis)

Calls the C++ function selection_get_export which returns string.

(set-manual-focus-path path) (no synopsis)

Calls the C++ function manual_focus_set which returns void.

(get-manual-focus-path) (no synopsis)

Calls the C++ function manual_focus_get which returns path.

(get-focus-path) (no synopsis)

Calls the C++ function focus_get which returns path.

(set-alt-selection string array_path) (no synopsis)

Calls the C++ function set_alt_selection which returns void.

(get-alt-selection string) (no synopsis)

Calls the C++ function get_alt_selection which returns array_path.

(cancel-alt-selection string) (no synopsis)

Calls the C++ function cancel_alt_selection which returns void.

(cancel-alt-selections) (no synopsis)

Calls the C++ function cancel_alt_selections which returns void.

(clear-undo-history) (no synopsis)

Calls the C++ function clear_undo_history which returns void.

(commit-changes) (no synopsis)

Calls the C++ function end_editing which returns void.

(start-slave double) (no synopsis)

Calls the C++ function start_slave which returns void.

(mark-start double) (no synopsis)

Calls the C++ function mark_start which returns void.

(mark-end double) (no synopsis)

Calls the C++ function mark_end which returns void.

8.4 All glue functions 133

(mark-cancel double) (no synopsis)

Calls the C++ function mark_cancel which returns void.

(remove-undo-mark) (no synopsis)

Calls the C++ function remove_undo_mark which returns void.

(add-undo-mark) (no synopsis)

Calls the C++ function add_undo_mark which returns void.

(unredoable-undo) (no synopsis)

Calls the C++ function unredoable_undo which returns void.

(undo-possibilities) (no synopsis)

Calls the C++ function undo_possibilities which returns int.

(undo int) (no synopsis)

Calls the C++ function undo which returns void.

(redo-possibilities) (no synopsis)

Calls the C++ function redo_possibilities which returns int.

(redo int) (no synopsis)

Calls the C++ function redo which returns void.

(show-history) (no synopsis)

Calls the C++ function show_history which returns void.

(archive-state) (no synopsis)

Calls the C++ function archive_state which returns void.

(start-editing) (no synopsis)

Calls the C++ function start_editing which returns void.

(end-editing) (no synopsis)

Calls the C++ function end_editing which returns void.

(cancel-editing) (no synopsis)

Calls the C++ function cancel_editing which returns void.

(in-graphics?) (no synopsis)

Calls the C++ function inside_graphics which returns bool.

(get-graphical-x) (no synopsis)

Calls the C++ function get_x which returns double.

(get-graphical-y) (no synopsis)

Calls the C++ function get_y which returns double.

134 About the API documentation

(get-graphical-object) (no synopsis)

Calls the C++ function get_graphical_object which returns tree.

(set-graphical-object tree) (no synopsis)

Calls the C++ function set_graphical_object which returns void.

(invalidate-graphical-object) (no synopsis)

Calls the C++ function invalidate_graphical_object which returns void.

(graphical-select double double) (no synopsis)

Calls the C++ function graphical_select which returns tree.

(graphical-select-area double double double double) (no synopsis)

Calls the C++ function graphical_select which returns tree.

(in-normal-mode?) (no synopsis)

Calls the C++ function in_normal_mode which returns bool.

(in-search-mode?) (no synopsis)

Calls the C++ function in_search_mode which returns bool.

(in-replace-mode?) (no synopsis)

Calls the C++ function in_replace_mode which returns bool.

(in-spell-mode?) (no synopsis)

Calls the C++ function in_spell_mode which returns bool.

(search-start bool) (no synopsis)

Calls the C++ function search_start which returns void.

(search-button-next) (no synopsis)

Calls the C++ function search_button_next which returns void.

(replace-start string string bool) (no synopsis)

Calls the C++ function replace_start which returns void.

(spell-start) (no synopsis)

Calls the C++ function spell_start which returns void.

(spell-replace string) (no synopsis)

Calls the C++ function spell_replace which returns void.

(session-complete-command tree) (no synopsis)

Calls the C++ function session_complete_command which returns string.

(custom-complete tree) (no synopsis)

Calls the C++ function custom_complete which returns void.

8.4 All glue functions 135

(keyboard-focus-on string) (no synopsis)

Calls the C++ function keyboard_focus_on which returns void.

(view-set-property scheme_tree scheme_tree) (no synopsis)

Calls the C++ function set_property which returns void.

(view-get-property scheme_tree) (no synopsis)

Calls the C++ function get_property which returns scheme_tree.

(get-window-width) (no synopsis)

Calls the C++ function get_window_width which returns int.

(get-window-height) (no synopsis)

Calls the C++ function get_window_height which returns int.

(clear-buffer) (no synopsis)

Calls the C++ function clear_buffer which returns void.

(tex-buffer) (no synopsis)

Calls the C++ function tex_buffer which returns void.

(clear-local-info) (no synopsis)

Calls the C++ function clear_local_info which returns void.

(refresh-window) (no synopsis)

Calls the C++ function invalidate_all which returns void.

(update-forced) (no synopsis)

Calls the C++ function typeset_forced which returns void.

(update-path path) (no synopsis)

Calls the C++ function typeset_invalidate which returns void.

(update-current-buffer) (no synopsis)

Calls the C++ function typeset_invalidate_all which returns void.

(update-players path bool) (no synopsis)

Calls the C++ function typeset_invalidate_players which returns void.

(generate-all-aux) (no synopsis)

Calls the C++ function generate_aux which returns void.

(generate-aux string) (no synopsis)

Calls the C++ function generate_aux which returns void.

(notify-page-change) (no synopsis)

Calls the C++ function notify_page_change which returns void.

136 About the API documentation

(notify-change int) (no synopsis)

Calls the C++ function notify_change which returns void.

(get-metadata string) (no synopsis)

Calls the C++ function get_metadata which returns string.

(cpp-nr-pages) (no synopsis)

Calls the C++ function nr_pages which returns int.

(print-to-file url) (no synopsis)

Calls the C++ function print_to_file which returns void.

(print-pages-to-file url string string) (no synopsis)

Calls the C++ function print_to_file which returns void.

(print) (no synopsis)

Calls the C++ function print_buffer which returns void.

(print-pages string string) (no synopsis)

Calls the C++ function print_buffer which returns void.

(print-snippet url content bool) (no synopsis)

Calls the C++ function print_snippet which returns array_int.

(graphics-file-to-clipboard url) (no synopsis)

Calls the C++ function graphics_file_to_clipboard which returns bool.

(export-postscript url) (no synopsis)

Calls the C++ function export_ps which returns void.

(export-pages-postscript url string string) (no synopsis)

Calls the C++ function export_ps which returns void.

(footer-eval string) (no synopsis)

Calls the C++ function footer_eval which returns void.

(texmacs-exec content) (no synopsis)

Calls the C++ function texmacs_exec which returns tree.

(texmacs-exec* content) (no synopsis)

Calls the C++ function var_texmacs_exec which returns tree.

(texmacs-expand content) (no synopsis)

Calls the C++ function exec_texmacs which returns tree.

(verbatim-expand content) (no synopsis)

Calls the C++ function exec_verbatim which returns tree.

8.4 All glue functions 137

(latex-expand content) (no synopsis)

Calls the C++ function exec_latex which returns tree.

(html-expand content) (no synopsis)

Calls the C++ function exec_html which returns tree.

(animate-checkout content) (no synopsis)

Calls the C++ function checkout_animation which returns tree.

(animate-commit content) (no synopsis)

Calls the C++ function commit_animation which returns tree.

(idle-time) (no synopsis)

Calls the C++ function idle_time which returns int.

(change-time) (no synopsis)

Calls the C++ function change_time which returns int.

(menu-before-action) (no synopsis)

Calls the C++ function before_menu_action which returns void.

(menu-after-action) (no synopsis)

Calls the C++ function after_menu_action which returns void.

(update-menus) (no synopsis)

Calls the C++ function update_menus which returns void.

(show-tree) (no synopsis)

Calls the C++ function show_tree which returns void.

(show-env) (no synopsis)

Calls the C++ function show_env which returns void.

(show-path) (no synopsis)

Calls the C++ function show_path which returns void.

(show-cursor) (no synopsis)

Calls the C++ function show_cursor which returns void.

(show-selection) (no synopsis)

Calls the C++ function show_selection which returns void.

(show-meminfo) (no synopsis)

Calls the C++ function show_meminfo which returns void.

(edit-special) (no synopsis)

Calls the C++ function edit_special which returns void.

(edit-test) (no synopsis)

Calls the C++ function edit_test which returns void.

138 About the API documentation

Index

action . 13
article . 11
Edit

Preferences
Security 13

extern . 13
File . 10, 18

Export 21

Import 21
Load . 18

Help
Scheme extensions 9

Insert . 10
Session

Scheme 12

139

	1. Overview of the Scheme extension language
	1.1. Why TeXmacs uses Scheme as its extension language
	1.2. When and how to use Scheme
	User provided initialization files
	User provided plug-ins
	Interactive invocation of Scheme commands
	Command-line options for executing Scheme commands
	Invoking Scheme scrips from TeXmacs markup

	1.3. General architecture of the Scheme API
	Built-in Scheme commands
	Extensions to Scheme and further utilities
	Internal modules and plug-ins

	1.4. The module system and lazy definitions
	1.5. Contextual overloading
	1.6. Meta information and logical programming
	1.7. The TeXmacs content model
	Passive documents and Scheme trees
	Active documents and C++ trees
	A common framework
	Persistent positions inside trees

	1.8. Standard utilities
	Regular expressions
	Dialogues
	User preferences
	New data formats and converters

	2. TeXmacs extensions to Scheme and utilities
	2.1. TeXmacs abbreviations
	2.2. Matching regular expressions
	2.3. Selection of subexpressions
	2.4. Logical programming extensions
	2.5. Function definition and contextual overloading
	Contextual overloading
	Other options for function and macro declarations

	2.6. Interactive dialogues
	2.7. User preferences
	2.8. Adding converters
	2.9. Keyboard bindings
	2.10. Defining menus

	3. Programming routines for editing documents
	3.1. The TeXmacs editing model
	Document fragments
	Positions inside document fragments
	Semantic navigation and further utilities
	A worked example

	3.2. Fundamental tree modification routines
	3.3. High level modification routines
	3.4. Path-based navigation

	4. TeXmacs buffer management
	4.1. Introduction
	4.2. Manipulating TeXmacs buffers
	Basic buffer management
	Information associated to buffers
	Synchronizing with the external world

	4.3. Manipulating TeXmacs views
	4.4. Manipulating TeXmacs windows

	5. Scheme interface for the graphical mode
	5.1. Low level graphics manipulation
	Rationale
	Definitions
	Manipulation of enhanced trees
	Sketch manipulation
	Miscellaneous

	5.2. Graphics interface between C++ and Scheme
	Rationale
	Definitions
	Coordinate transformations
	Grid routines
	Selection of shapes
	Computations with shapes

	6. Extending the graphical user interface
	6.1. An introduction to widgets
	6.2. Menus and toolbars
	6.3. Displaying lists and trees
	Displaying lists with enum, choice and choices
	Displaying trees with tree-widget
	Default data roles
	Using commands
	Examples
	An example using data roles
	An example using the buffer tree
	An example with the side tools

	6.4. Dialogs and composite widgets
	6.4.1. Composite widgets

	6.5. Forms
	6.6. Containers, glue, refresh and co.
	6.6.1. Attribute widgets
	6.6.2. Container or layout widgets
	6.6.3. Glue widgets
	6.6.4. Refresh widgets

	6.7. Widgets reference guide

	7. Writing TeXmacs bibliography styles
	7.1. Introduction
	7.2. Example of a simple bibliography style
	7.3. Scheme functions for writing bibliography styles
	7.3.1. Style management
	7.3.2. Field related routines
	7.3.3. Routines for structuring the output
	7.3.4. Routines for textual manipulations
	7.3.5. Miscellaneous routines

	8. About the API documentation
	8.1. The TeXmacs file system
	8.1.1. A tmfs primer
	8.1.2. The TeXmacs filesystem
	8.1.3. Implementing a handler
	8.1.4. Installing the handler

	8.2. The URL system
	8.2.1. Navigation
	8.2.2. Predicates

	8.3. Notification and download of updates
	8.3.1. Operating system specifics
	8.3.2. Client side interface

	8.4. All glue functions

	Index

